PABPN1 role in regulation of alternative cleavage and polyadenylation
Ontology highlight
ABSTRACT: This SuperSeries is composed of the following subset Series: GSE27452: Genome-wide maps of polyadenylation sites in control and PABPN1kd cells GSE32302: Genome-wide maps of polyadenylation sites in OPMD-model and control mice Refer to individual Series
Project description:We applied deep-sequencing based technique, 3'-Seq, to obtain comprehansive maps of poly-A sites in human cells. 3'-Seq was applied to two cell lines (U2OS and RPE-1), in control and PABPN1 knockdown cells Examination of poly-A sites in control and PABPN1kd cells (in two different cell lines)
Project description:We applied deep-sequencing based technique, 3'-Seq, to obtain comprehansive maps of poly-A sites in OPMD-model mice expressing trePABPN1(A17) mutant and control mice Examination of poly-A sites in control and OPMD-model mice (in two ages: 20 weeks and 12 months)
Project description:We mapped and quantified poly(A) sites in BJ and MCF10A cells under proliferative, arrested and transformed states Two human cell lines (BJ and MCF10A) examined under proliferative, arrested and transformed states
Project description:Background: Microorganisms are the major cause of food spoilage during storage, processing and distribution. Pseudomonas fluorescens is a typical spoilage bacterium that contributes to a large extent to the spoilage process of proteinaceous food. RpoS is considered an important global regulator involved in stress survival and virulence in many pathogens. Our previous work revealed that RpoS contributed to the spoilage activities of P. fluorescens by regulating resistance to different stress conditions, extracellular acylated homoserine lactone (AHL) levels, extracellular protease and total volatile basic nitrogen (TVB-N) production. However, RpoS-dependent genes in P. fluorescens remained undefined. Results: RNA-seq transcriptomics analysis combined with quantitative proteomics analysis basing on multiplexed isobaric tandem mass tag (TMT) labeling was performed for the P. fluorescens wild-type strain UK4 and its derivative carrying a rpoS mutation. A total of 375 differentially expressed genes (DEGs) and 212 differentially expressed proteins (DEPs) were identified in these two backgrounds. The DGEs were further verified by qRT-PCR tests, and the genes directly regulated by RpoS were confirmed by 5’-RACE-PCR sequencing. The combining transcriptome and proteome analysis revealed a role of this regulator in several cellular processes, including polysaccharide metabolism, intracellular secretion and extracellular structures, cell well biogenesis, stress responses, ammonia and biogenic amine production, which may contribute to biofilm formation, stress resistance and spoilage activities of P. fluorescens. Moreover, in this work we indeed observed that RpoS contributed to the production of the macrocolony biofilm’s matrix.
Project description:To investigate the epigenetic landscape at the interface between mother and fetus, we provide a comprehensive analysis of parent of origin bias in the placenta. Using F1 interspecies hybrids, we sequenced RNA from 23 individual midgestation placentas, five late stage placentas, and two yolk sac samples and then used SNPs to determine whether transcripts were preferentially generated from the maternal or paternal allele. In the placenta, we find 103 genes that show significant and reproducible parent-of-origin bias, of which 78 are novel candidates. Most (96%) show a strong maternal bias which, using multiple models, we demonstrate is not due to maternal decidual contamination. Analysis of the X chromosome also reveals paternal expression of Xist and several genes that escape inactivation, most significantly Rps4x, Fhl1, and Slc38a5. Finally, sequencing individual placentas allowed us to reveal notable expression similarity between littermates. In all, we observe a striking preference for maternal transcription in the midgestation mouse placenta and a dynamic imprinting landscape in extraembryonic tissues, reflecting the complex nature of epigenetic pathways in the placenta. 3'-end Sequencing for Expression Quantification (3SEQ) and SNP Analysis to observe parent-of-origin bias in 28 placental samples at two time points and 2 yolk sac samples
Project description:MicroRNAs (miRNAs) are processed from longer precursors with fold-back structures. While animal MIRNA precursors have homogenous structures, plant precursors comprise a collection of fold-backs with variable size and shape. Here, we design an approach (SPARE) to systematically analyze miRNA processing intermediates and characterize the biogenesis of most of the evolutionary conserved miRNAs present in Arabidopsis thaliana. We found that plant MIRNAs are processed by four mechanisms, depending on the sequential direction of the processing machinery and the number of cuts required to release the miRNA. Classification of the precursors according to their processing mechanism revealed specific structural determinants for each group. We found that the complexity of the miRNA processing pathways occurs in both ancient and evolutionary young sequences, and that members of the same family can be processed in different ways. We observed that different structural determinants compete for the processing machinery and that alternative miRNAs can be generated from a single precursor. The results provide a mechanistic explanation for the structural diversity of MIRNA precursors in plants and new insights towards the understanding of the biogenesis of small RNAs. Approach to systematically analyze miRNA processing intermediates and characterize the biogenesis of conserved and young miRNAs present in Arabidopsis thaliana. MiRNA processing intermediates profiles of Wild type and Fiery mutants Arabidopsis plants were analyzed, using Illumina GAIIx.
Project description:RNA interference is involved in silencing of transposable and repetitive elements. How these elements are initially recognized by RNAi is a fundamental and unanswered question. We previously identified a class of Dicer-independent small RNAs, called primal small RNAs (priRNAs), in fission yeast. The mechanism by which Dicer-independent small RNAs are generated is not clear for any species. Here we reconstitute priRNA biogenesis in vitro and demonstrate that priRNAs can nucleate RNAi in vivo. We identify 3'-5' exonuclease Trimmer and show that Argonaute, loaded with longer RNA precursors, recruits Trimmer to generate the new 3' end. Next, we show that antisense priRNAs accumulate in rrp6M-NM-^T cells and nucleate RNAi at subset of protein coding genes in a Trimmer- and priRNA-dependent manner. Thus, Rrp6-mediated degradation of antisense transcripts and priRNA precursors protects the genome from spurious RNAi. Our results suggest that Argonaute association with random RNA degradation products triggers RNAi in a process of transcriptome surveillance. small RNA profiling in wild type S. pombe cells and in mutant cells
Project description:In mammals, piRNA populations are dynamic throughout male germ cell development. Embryonic piRNAs consist of both primary and secondary species and are mainly directed toward transposons. In meiotic cells, however, the piRNA population is transposon-poor and restricted to primary piRNAs derived from pachytene piRNA clusters. The mechanism controlling which piRNAs are present at each developmental stage is poorly understood. Here we show that RNF17 shapes adult meiotic piRNA content by suppressing the production of secondary piRNAs. In the absence of RNF17, ping-pong (secondary amplification) occurs inappropriately in meiotic cells – aberrantly targeting protein-coding genes and lncRNAs. Our data indicate that RNF17 comprises one component of a “refereeing” mechanism that prevents deleterious activity of the meiotic piRNA pathway by ensuring the selective loading of PIWI proteins with products of meiotic piRNA clusters. Refer to individual Series
Project description:KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) is highly immunosuppressive and resistant to targeted therapies, immune checkpoint blockade and engineered T cells. In this study, we performed a systematic high throughput combinatorial drug screen and identified a synergistic interaction between the MEK inhibitor trametinib and the multi-kinase inhibitor nintedanib. Using bulk and single-cell RNA sequencing and immunophenotyping, we show that the combination therapy reprograms the immunosuppressive microenvironment and primes cytotoxic and memory T cells to infiltrate the tumors, thereby sensitizing mesenchymal PDAC to PD-L1 inhibition.
Project description:The assembly of fission yeast pericentromeric heterochromatin and generation of small interfering RNAs (siRNAs) from noncoding centromeric transcripts are mutually dependent processes. How this interdependent positive feedback loop is first triggered is a fundamental unanswered question. Here we show that two distinct Argonaute (Ago1)-dependent pathways mediate small RNA generation. RNA-dependent RNA polymerase complex (RDRC) and Dicer act on specific noncoding RNAs to generate siRNAs by a mechanism that requires the slicer activity of Ago1 but is independent of pre-existing heterochromatin. In the absence of RDRC or Dicer, a distinct class of small RNAs, called primal small RNAs (priRNAs), associate with Ago1. priRNAs are degradation products of abundant transcripts, which bind to Ago1 and target antisense transcripts that result from bidirectional transcription of DNA repeats. Our results suggest that a transcriptome surveillance mechanism based on the random association of RNA degradation products with Argonaute triggers siRNA amplification and heterochromatin assembly within DNA repeats. small RNA profiling in wild type S. pombe cells and in 12 mutant cells