Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Transcription profiling of mouse embryonic fibroblasts from embryos with ?CH1 mutation in p300 and/or CBP atreated with hypoxia or dipyridyl (a hypoxia mimetic) and trichostatin A (a histone deacetylase inhibitor) reveals two transactivation mechanisms are responsible for the bulk of HIF-1alpha-responsive gene expression


ABSTRACT: The C-terminal activation domain (C-TAD) of the hypoxia-inducible transcription factors HIF-1? and HIF-2? binds the CH1 domains of the related transcriptional coactivators CREB-binding protein (CBP) and p300, an oxygen-regulated interaction thought to be highly essential for hypoxia-responsive transcription. The role of the CH1 domain in vivo is unknown, however. We created mutant mice bearing deletions in the CH1 domains (?CH1) of CBP and p300 that abrogate their interactions with the C-TAD, revealing that the CH1 domains of CBP and p300 are genetically non-redundant and indispensable for C-TAD transactivation function. Surprisingly, the CH1 domain was only required for an average of ~35-50% of global HIF-1?-responsive gene expression, whereas another HIF-transactivation mechanism that is sensitive to the histone deacetylase inhibitor trichostatin A (TSAS) accounts for ~70%. Both pathways are required for greater than 90% of the response for some target genes. Our findings suggest that a novel functional interaction between the protein acetylases CBP and p300, and deacetylases, is essential for nearly all HIF-responsive transcription. Experiment Overall Design: Three separate affymetrix experiments using mouse embryonic fibroblasts derived from embryos bearing the ?CH1 mutation in p300 and/or CBP and treated with hypoxia or combinations of dipyridyl (a hypoxia mimetic) and trichostatin A (a histone deacetylase inhibitor) are described (GSE3195, GSE3196 and GSE3296). Samples are not directly comparable between experiments because of differences in experiment design and Affymetrix chips used.

ORGANISM(S): Mus musculus

SUBMITTER: Paul Brindle 

PROVIDER: E-GEOD-3318 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression.

Kasper Lawryn H LH   Boussouar Fayçal F   Boyd Kelli K   Xu Wu W   Biesen Michelle M   Rehg Jerold J   Baudino Troy A TA   Cleveland John L JL   Brindle Paul K PK  

The EMBO journal 20051020 22


The C-terminal activation domain (C-TAD) of the hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha binds the CH1 domains of the related transcriptional coactivators CREB-binding protein (CBP) and p300, an oxygen-regulated interaction thought to be highly essential for hypoxia-responsive transcription. The role of the CH1 domain in vivo is unknown, however. We created mutant mice bearing deletions in the CH1 domains (DeltaCH1) of CBP and p300 that abrogate their interactions with t  ...[more]

Similar Datasets

2005-10-24 | GSE3318 | GEO
2007-07-07 | E-GEOD-3296 | biostudies-arrayexpress
2008-06-12 | E-GEOD-3195 | biostudies-arrayexpress
2007-12-15 | E-GEOD-3196 | biostudies-arrayexpress
2005-10-24 | GSE3195 | GEO
2005-10-24 | GSE3296 | GEO
2005-10-24 | GSE3196 | GEO
2014-09-29 | E-GEOD-54452 | biostudies-arrayexpress
2014-09-29 | E-GEOD-54453 | biostudies-arrayexpress
2023-08-07 | GSE193647 | GEO