ABSTRACT: East-Asian (EA) patients with Non Small Cell Lung Cancer (NSCLC) are associated with a high proportion of non-smoking women, EGFR activating somatic mutations, and clinical responses to tyrosine kinase inhibitors. We identify copy number alterations specific to EA and Western European (WE) NSCLCs and conducted an integrative analysis using transcritomic data for identifying copy-number-driven candidate genes. Samples were hybridized to Affymetrix Genome-Wide Human SNP 6.0 arrays according to the manufacturer’s specifications in the same center. 226 lung adenocarcinomas (90 East-Asian and 136 Western-European) were analyzed for copy-number aberrations (CNAs) using a common high resolution SNP microarray platform.
Project description:East-Asian (EA) patients with Non Small Cell Lung Cancer (NSCLC) are associated with a high proportion of non-smoking women, EGFR activating somatic mutations, and clinical responses to tyrosine kinase inhibitors. We identify copy number alterations specific to EA and Western European (WE) NSCLCs and conducted an integrative analysis using transcritomic data for identifying copy-number-driven candidate genes. Samples were hybridized to Affymetrix Genome-Wide Human SNP 6.0 arrays according to the manufacturer’s specifications in the same center.
Project description:African American (AA) men have a significantly higher mortality rate from prostate cancer (PCa) compared to European American (EA) men. AA men are twice as likely to die from PCa compared to EA men and 8 times as likely as Asian American men to die from PCa. The biological basis for these differences in PCa mortality are unclear. We carried out Copy Number Alteration (CNA) studies on a new set of 40 highly tumor-enriched primary PCas and matched benign prostate tissues from AA men using high resolution Affymetrix 6.0 SNP arrays and expression array analysis using RNAs (GSE71016) from the same tissues using high purity tumors from AA men and matched benign tissue. We have confirmed the specific loss of 4p16.3 described previously and identified a novel tumor suppressor gene, RGS12 at this locus that shows significantly decreased expression in AA PCa but not EA EA PCa.
Project description:Single-cell RNA-seq (scRNA-seq) of pancreatic islets have reported on α- and β-cell gene expression in mice and subjects of predominantly European ancestry. We aimed to assess these findings in East-Asian islet-cells. 448 islet-cells were captured from three East-Asian non-diabetic subjects for scRNA-seq. Hierarchical clustering using pancreatic cell lineage genes was used to assign cells into cell-types. Differentially expressed transcripts between α- and β-cells were detected using ANOVA and in silico replications of mouse and human islet cell genes were performed. We identified 118 α, 105 β, 6 δ endocrine cells and 47 exocrine cells. Besides INS and GCG, 26 genes showed differential expression between α- and β-cells. 10 genes showed concordant expression as reported in rodents, while FAM46A was significantly discordant. Comparing our East-Asian data with data from primarily European subjects, we replicated several genes implicated in nuclear receptor activations, acute phase response pathway, glutaryl-CoA/tryptophan degradations and EIF2/AMPK/mTOR signaling. Additionally, we identified protein ubiquitination to be associated among East-Asian β-cells. We report on East-Asian α- and β-cell gene signatures and substantiate several genes/pathways. We identify expression signatures in East-Asian β-cells that perhaps reflects increased susceptibility to cell-death and warrants future validations to fully appreciate their role in East-Asian diabetes pathogenesis.
Project description:In the United States, African-American (AA) women are more likely to develop early-onset breast cancer and have historically poorer outcomes due to this disease compared to European-American (EA) women. Here, we analyzed genomic profiles of breast tumors from young women (<50 years old), matched by tumor subtype, histological grade, and ethnicity (African-American, AA, compared to European-American, EA). DNA copy number alterations (CNAs) were analyzed on the Affymetrix Human SNP Array v 6.0 platform. The study provides insight into the genetic component of ethnicity-related breast cancer health disparities. DNA copy number alterations (CNAs) and genotypes were analyzed using the Affymetrix SNP 6.0 platform. Breast tumor samples from young women (< 50 years old) were matched as follows: a matched pair consists of one AA and one EA sample, matched for tumor grade and tumor subtype (based on immunohistochemical analysis of ER, PR, and HER2 status). DNA from forty-four samples (22 AA, 22 EA) was analyzed on the Affymetrix SNP 6.0 array according to manufacturer’s directions.
Project description:In the United States, African-American (AA) women are more likely to develop early-onset breast cancer and have historically poorer outcomes due to this disease compared to European-American (EA) women. Here, we analyzed genomic profiles of breast tumors from young women (<50 years old), matched by tumor subtype, histological grade, and ethnicity (African-American, AA, compared to European-American, EA). DNA copy number alterations (CNAs) were analyzed on the Affymetrix Human SNP Array v 6.0 platform. The study provides insight into the genetic component of ethnicity-related breast cancer health disparities.
Project description:In the majority of colorectal cancers (CRC) under clinical suspicion for a hereditary cause, the disease-causing genetic factors are still to be discovered. In order to identify such genetic factors we stringently selected a discovery cohort of 41 CRC index patients with microsatellite-stable tumors. All patients were below 40 years of age at diagnosis and/or exhibited an overt family history. We employed genome-wide copy number profiling using high-resolution SNP-based array CGH on germline DNA, which resulted in the identification of novel copy number variants (CNVs) in 6 patients (15%) encompassing, among others, the cadherin gene CDH18, the bone morphogenetic protein antagonist family gene GREM1, and the breakpoint cluster region gene BCR. In addition, two genomic deletions were encountered encompassing two microRNA genes, hsa-mir-491/KIAA1797 and hsa-mir-646/AK309218. None of these CNVs has previously been reported in relation to CRC predisposition in humans, nor were they encountered in large control cohorts (>1,600 unaffected individuals). Since several of these newly identified candidate genes may be functionally linked to CRC development, our results illustrate the potential of this approach for the identification of novel candidate genes involved in CRC predisposition. Copy number detection was performed using CNAG2.0 software for 250k SNP arrays and using the Affymetrix Genotyping Console v2.1 software for SNP 6.0 arrays, Reference genomes are included in this data set. Germline genomic DNA from 41 patients with early-onset microsatellite stable colorectal cancer was hybridized on Affymetrix Nsp/6.0 SNP-based arrays according to manufacturer's procedures.
Project description:Genetic analyses for bipolar disorder (BPD) have achieved prominent success in Europeans in recent years, whereas its genetic basis in other populations remains relatively less understood. We herein report that the lead risk locus for BPD in European genome-wide association studies (GWAS), the single nucleotide polymorphism (SNP) rs9834970 near TRANK1 at 3p22 region, is also genome-wide significantly associated with BPD in 5,748 cases and 65,361 controls of East Asian origin. In this study, we performed RAN-seq analysis of cultured rat neurons treated with shRNA knockdown of Trank1.
Project description:In this study we have screened 56 pairs of AML samples for cryptic copy number aberration and loss-of-heterozygosity. We have identified 80 CNAs among 56 patient samples; 21 containing <5 genes while 11 contained or were present within a single gene. Four (7%) patients carried gains at sub-telomeres on multiple chromosomes. Some of the cryptic regions are common with other recent studies while most are novel. Also, we show that it is better to analyse sample at diagnosis and sample at remission (paired control) both against a common unrelated control and then compare the two results than analysing the diagnostic sample directly against the paired control. Genomic DNA from 56 diagnostic AML samples were analysed using Affymetrix SNP 6.0 arrays. Genomic DNA at the time of remission from each patient served as paired-control. Prevalence of copy number aberrations and regions of homozygosity were identified.