IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors
Ontology highlight
ABSTRACT: This SuperSeries is composed of the following subset Series: GSE34892: IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors (Affymetrix). GSE34915: IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors (Illumina). Refer to individual Series
Project description:While most blood lineages are assumed to mature through a single cellular and developmental route downstream of hematopoietic stem cells (HSCs), dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors (CMPs) differentiate into common dendritic cell progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that Interferon regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8-/- bone marrow demonstrated cell-intrinsic defects in the formation of CDPs and all splenic dendritic cell subsets. Irf8-/- CMPs and, unexpectedly, Irf8-/- ALPs produced more neutrophils in vivo than their wild type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context. CMP (Lineage-c-kithiSca-1-CD11c- CD34+ Flk2+CD16/32-CD115- ) or CDP (Lin-c-kitintSca-1-CD34+Flk2+CD16/32-CD115+) were double sorted from the bone marrow of wild type C57BL/6 mice. RNA was extracted from 10,000-30,000 sorted cells using Trizol (Invitrogen) and linear acrylamide (Ambion), amplified using Affymetrix Two-Cycle Amplification and IVT kits (Affymetrix), and hybridized to Affymetrix Mouse Genome 430 2.0 chips.
Project description:While most blood lineages are assumed to mature through a single cellular and developmental route downstream of hematopoietic stem cells (HSCs), dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors (CMPs) differentiate into common dendritic cell progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that Interferon regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8-/- bone marrow demonstrated cell-intrinsic defects in the formation of CDPs and all splenic dendritic cell subsets. Irf8-/- CMPs and, unexpectedly, Irf8-/- ALPs produced more neutrophils in vivo than their wild type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context. CMP (Lineage-c-kithiSca-1-CD11c- CD34+ Flk2+CD16/32-CD115- ) or ALP (Lin-Ly6D-B220-c-kit+Flk2+IL7R?+) were double sorted from the bone marrow of wild type C57BL/6 mice. RNA was extracted from 2,000-15,000 sorted cells using Qiagen RNeasy Mini kit, amplified using Nugen pico-amplification kit , and 750 ng of aRNA was hybridized to Illumina MouseRef-8 v 2.0 bead chips Amy,M,Becker
Project description:While most blood lineages are assumed to mature through a single cellular and developmental route downstream of hematopoietic stem cells (HSCs), dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors (CMPs) differentiate into common dendritic cell progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that Interferon regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8-/- bone marrow demonstrated cell-intrinsic defects in the formation of CDPs and all splenic dendritic cell subsets. Irf8-/- CMPs and, unexpectedly, Irf8-/- ALPs produced more neutrophils in vivo than their wild type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context.
Project description:While most blood lineages are assumed to mature through a single cellular and developmental route downstream of hematopoietic stem cells (HSCs), dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors (CMPs) differentiate into common dendritic cell progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that Interferon regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8-/- bone marrow demonstrated cell-intrinsic defects in the formation of CDPs and all splenic dendritic cell subsets. Irf8-/- CMPs and, unexpectedly, Irf8-/- ALPs produced more neutrophils in vivo than their wild type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context.
2012-01-07 | GSE34915 | GEO
Project description:IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors
Project description:IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors (Affymetrix).
Project description:IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid progenitors (Illumina).
Project description:Dendritic cells (DC) develop from hematopoietic stem cells, which is guided by instructive signals through cytokines. DC development progresses from multipotent progenitors (MPP) via common DC progenitors (CDP) into DC. Flt3 ligand (Flt3L) signaling via the Flt3/Stat3 pathway is of pivotal importance for DC development under steady state conditions. Additional factors produced during steady state or inflammation, such as TGF-beta1 or GM-CSF, also influence the differentiation potential of MPP and CDP. Here, we studied how gp130, GM-CSF and TGF-beta1 signaling influence DC lineage commitment from MPP to CDP and further into DC. We observed that activation of gp130 signaling promotes expansion of MPP. Additionally, gp130 signaling inhibited Flt3L-driven DC differentiation, but had little effect on GM-CSF-driven DC development. The inflammatory cytokine GM-CSF induces differentiation of MPP into inflammatory DC and blocks steady state DC development. Global transcriptome analysis revealed a GM-CSF-driven gene expression repertoire that primes MPP for differentiation into inflammatory DC. Finally, TGF-beta1 induces expression of DC-lineage affiliated genes in MPP, including Flt3, Irf-4 and Irf-8. Under inflammatory conditions, however, the effect of TGF- beta1 is altered: Flt3 is not upregulated, indicating that an inflammatory environment inhibits steady state DC development. Altogether, our data indicate that distinct cytokine signals produced during steady state or inflammation have a different outcome on DC lineage commitment and differentiation. 6 samples in total. Multipotent progenitor - GM-MPP_1 - GM-MPP_2 Dendritic cell - GM-DC_1 - GM-DC_2 Dendritic cell plus TNFa - GM-TNFa-DC_1 - GM-TNFa-DC_2
Project description:Collombet2016 - Lymphoid and myeloid cell
specification and transdifferentiation
This model is described in the article:
Logical modeling of lymphoid
and myeloid cell specification and transdifferentiation
Samuel Collombet, Chris van Oevelen,
Jose Luis Sardina Ortega, Wassim Abou-Jaoudé, Bruno Di
Stefano, Morgane Thomas-Chollier, Thomas Graf, and Denis
Thieffry
Proceedings of the National Academy of
Sciences of the United States of America
Abstract:
Blood cells are derived from a common set of hematopoietic
stem cells, which differentiate into more specific progenitors
of the myeloid and lymphoid lineages, ultimately leading to
differentiated cells. This developmental process is controlled
by a complex regulatory network involving cytokines and their
receptors, transcription factors, and chromatin remodelers.
Using public data and data from our own molecular genetic
experiments (quantitative PCR, Western blot, EMSA) or
genome-wide assays (RNA-sequencing, ChIP-sequencing), we have
assembled a comprehensive regulatory network encompassing the
main transcription factors and signaling components involved in
myeloid and lymphoid development. Focusing on B-cell and
macrophage development, we defined a qualitative dynamical
model recapitulating cytokine-induced differentiation of common
progenitors, the effect of various reported gene knockdowns,
and the reprogramming of pre-B cells into macrophages induced
by the ectopic expression of specific transcription factors.
The resulting network model can be used as a template for the
integration of new hematopoietic differentiation and
transdifferentiation data to foster our understanding of
lymphoid/myeloid cell-fate decisions.
This model is hosted on
BioModels Database
and identified by:
MODEL1610240000.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:The commitment of hematopoietic stem cells and multipotent progenitors (MPPs) can be tuned to reprogram their differentiation capacity to be biased toward myeloid cells in response to an infection. Bach2, which inhibits myeloid differentiation in common lymphoid progenitors, repressed a cohort of genes of myeloid function (myeloid genes) and activated those for lymphoid function (lymphoid genes) in MPPs. In addition, Bach2 repressed both Cebpb and its target Csf1, encoding C/EBPβ and macrophage colony-stimulating factor (M-CSF), respectively, whereas C/EBPβ repressed Bach2 and activated the M-CSF receptor gene Csf1r. Bach2 and C/EBPβ bound to overlapping regulatory regions of their myeloid target genes, suggesting the presence of a gene regulatory network (GRN) with mutual repression and antagonistic, feed-forward regulation of myeloid genes. Lipopolysaccharide reduced the expression of Bach2, resulting in enhanced myeloid differentiation. Bach2 tunes the commitment of multipotent progenitors to myeloid and lymphoid lineages under both normal and infectious conditions.