Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Expression data from aquatic and terrestrial axolotl full thickness epithelial flank wounds collected over seven days


ABSTRACT: While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair. We used microarray analysis to determine the gene expression changes that take place during scar free wound healing in aquatic and terrestrial axolotl salamanders. Epidermal tissue was harvested using a 4mm biopsy punch. Two wounds were made along the flank and posterior to the forelimbs. Harvested epidermis was pooled for each animal. Four biological replicates were collected from uninjured epidermis (D0) and at 1, 3, and 7 days post injury.

ORGANISM(S): Ambystoma mexicanum

SUBMITTER: James Monaghan 

PROVIDER: E-GEOD-35255 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2012-01-31 | GSE35255 | GEO
2010-07-20 | E-GEOD-23006 | biostudies-arrayexpress
2016-12-31 | GSE67877 | GEO
2016-12-31 | GSE67876 | GEO
2019-12-18 | GSE126772 | GEO
2014-05-20 | E-MTAB-2509 | biostudies-arrayexpress
2023-04-28 | GSE224879 | GEO
2017-02-28 | GSE93638 | GEO
2017-02-28 | GSE76795 | GEO
2021-06-04 | GSE154871 | GEO