Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Transcriptional profiling of mouse inner cell mass of the blastocyst, primordial germ cells and cultured pluripotent stem cells


ABSTRACT: Pluripotent stem cells are derived from culture of early embryos or the germline, and can be induced by reprogramming of somatic cells. Barriers to reprogramming are expected to exist that stabilize the differentiated state and have tumor suppression functions. However, we have a limited understanding of what such barriers might be. To find novel barriers to reprogramming to pluripotency, we compared the transcriptional profiles of the mouse germline to pluripotent and somatic cells, in vivo and in vitro. There is a remarkable global expression of the transcriptional program for pluripotency in Primordial Germ Cells (PGCs). We identify parallels between PGCs reprogramming to pluripotency and human germ cell tumorigenesis, including the loss of LATS2, a tumor suppressor kinase of the Hippo pathway. We show that knockdown of LATS2 increases the efficiency of induction of pluripotency in human cells. LATS2 RNAi, unlike p53 RNAi, specifically enhances the generation of fully reprogrammed iPS cells without accelerating cell proliferation. We further show that LATS2 represses reprogramming in human cells by post-transcriptionally antagonizing TAZ but not YAP, two downstream effectors of the Hippo pathway. These results reveal transcriptional parallels between germ cell transformation and the generation of iPS cells, and indicate that the Hippo pathway constitutes a barrier to cellular reprogramming. Mouse pluripotent cells isolated directly from embryos or cultured in vitro as stem cells were analyzed using Affymetrix expression microarrays, together with several non-pluripotent cell controls, in 2-6 replicates per sample.

ORGANISM(S): Mus musculus

SUBMITTER: Miguel Ramalho-Santos 

PROVIDER: E-GEOD-35416 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming.

Qin Han H   Blaschke Kathryn K   Wei Grace G   Ohi Yuki Y   Blouin Laure L   Qi Zhongxia Z   Yu Jingwei J   Yeh Ru-Fang RF   Hebrok Matthias M   Ramalho-Santos Miguel M  

Human molecular genetics 20120127 9


Pluripotent stem cells are derived from culture of early embryos or the germline and can be induced by reprogramming of somatic cells. Barriers to reprogramming that stabilize the differentiated state and have tumor suppression functions are expected to exist. However, we have a limited understanding of what such barriers might be. To find novel barriers to reprogramming to pluripotency, we compared the transcriptional profiles of the mouse germline with pluripotent and somatic cells, in vivo an  ...[more]

Similar Datasets

2012-01-31 | GSE35416 | GEO
2021-12-10 | PXD023802 | Pride
2014-09-18 | E-GEOD-61472 | biostudies-arrayexpress
2013-02-17 | GSE43398 | GEO
2012-05-29 | E-GEOD-35775 | biostudies-arrayexpress
2012-05-30 | E-GEOD-37821 | biostudies-arrayexpress
2024-01-18 | GSE216933 | GEO
2015-07-20 | GSE67259 | GEO
2010-01-26 | E-GEOD-19960 | biostudies-arrayexpress
2013-02-17 | E-GEOD-43398 | biostudies-arrayexpress