Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Molecular diagnosis of T cell and/or antibody-mediated rejection in human kidney transplant biopsies


ABSTRACT: Histologic diagnosis of T cell-mediated rejection in kidney transplant biopsies has limited reproducibility because it is based on non-specific lesions using arbitrary rules that are subject to differing interpretations. We used microarray results from 403 indication biopsies previously given histologic diagnoses to develop a molecular classifier that assigned a molecular T cell-mediated rejection score to each biopsy. Independent assessment of the biopsies by multiple pathologists confirmed considerable disagreement on the presence of TCMR features: 79-88% accuracy and 35-69% sensitivity. The agreement of the molecular T cell-mediated rejection score with the histology diagnosis was similar to agreement among individual pathologists: accuracy 89%, sensitivity 51%. However, the score also predicted the consensus among pathologists, being highest when all agreed. Many discrepancies between the scores and the histologic diagnoses were in situations where histology is unreliable e.g. scarred biopsies. The score correlated with histologic lesions and gene sets associated with T cell-mediated rejection. The transcripts most often selected by the classifier were expressed in effector T cells, dendritic cells, or macrophages or inducible by interferon-gamma. Thus the T cell-mediated rejection score offers an objective assessment of kidney transplant biopsies, predicting the consensus opinion among multiple pathologists, and offering insights into underlying disease mechanisms. Antibody-mediated rejection is a major cause of kidney transplant failure, but the current diagnostic system misses most cases due to dependency on subjective non-standardized tests. We hypothesized that molecular features could provide a test to address this problem. We classified 403 biopsies by a reference standard based on microcirculation lesions and donor-specific HLA antibody, and used microarray analysis to develop a classifier that assigned each biopsy a score reflecting the probability of antibody-mediated rejection. The scores correlated with donor-specific antibody and histologic lesions: 42/45 biopsies with antibody-mediated rejection scores >0.5 had both donor-specific antibody and microcirculation lesions. Intermediate scores (0.2-0.5) were more ambiguous, but became more specific combined with donor-specific antibody. Compared to diagnoses based on histology-plus-donor-specific antibody, the scores had sensitivity 0.67; specificity 0.90. Donor-specific antibody improved the specificity to 0.97. The score correlated not only with diagnoses of individual pathologists but with the consensus among multiple pathologists. The classifier used transcripts expressed in endothelial cells (e.g. CDH13, DARC, ROBO4) and NK cells (e.g. CX3CR1, FGFBP2), as well as IFNG-inducible transcripts e.g. CXCL11. Thus the molecular phenotype of antibody-mediated rejection provides not only an objective test that predicts microcirculation lesions and donor-specific HLA antibody, but also offers mechanistic insights. All consenting renal transplant patients undergoing biopsies for cause as standard of care. 403 samples and 8 controls (nephrectomies). This dataset is part of the TransQST collection.

ORGANISM(S): Homo sapiens

SUBMITTER: Jessica Chang 

PROVIDER: E-GEOD-36059 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Molecular microscope strategy to improve risk stratification in early antibody-mediated kidney allograft rejection.

Loupy Alexandre A   Lefaucheur Carmen C   Vernerey Dewi D   Chang Jessica J   Hidalgo Luis G LG   Beuscart Thibaut T   Verine Jerome J   Aubert Olivier O   Dubleumortier Sébastien S   Duong van Huyen Jean-Paul JP   Jouven Xavier X   Glotz Denis D   Legendre Christophe C   Halloran Philip F PF  

Journal of the American Society of Nephrology : JASN 20140403 10


Antibody-mediated rejection (ABMR) is the leading cause of kidney allograft loss. We investigated whether the addition of gene expression measurements to conventional methods could serve as a molecular microscope to identify kidneys with ABMR that are at high risk for failure. We studied 939 consecutive kidney recipients at Necker Hospital (2004-2010; principal cohort) and 321 kidney recipients at Saint Louis Hospital (2006-2010; validation cohort) and assessed patients with ABMR in the first 1  ...[more]

Publication: 1/3

Similar Datasets

2013-02-13 | GSE36059 | GEO
2017-07-10 | E-GEOD-98320 | biostudies-arrayexpress
2017-07-10 | GSE98320 | GEO
2020-05-06 | GSE145780 | GEO
2019-08-16 | GSE124897 | GEO
2019-08-16 | GSE125478 | GEO
2013-02-07 | GSE44131 | GEO
2020-10-07 | GSE150156 | GEO
2013-02-07 | E-GEOD-44131 | biostudies-arrayexpress
2013-08-23 | GSE50084 | GEO