Transcriptional profiling of somatic cells differentiation throughout oocyte competence acquisition in the xenopus ovarian follicles.
Ontology highlight
ABSTRACT: Somatic cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 samples were collected from immature stage IV follicles, C1 samples from immature stage VI follicles, and C2 samples from in vitro matured stage VI follicles. Global transcriptional profiling was performed using somatic cells collected from xenopus ovarian follicles during in vivo oocyte developmental competence acquisition. Somatic cells were collected at 3 stages of oogenesis: early stage follicles (stage IV, vitellogenic, prophase I arrested oocytes, meiotically competent but developmentally incompetent, n=5), late stage follicles (stage VI, post-vitellogenic, prophase I arrested oocytes, meiotically competent and developmentally competent, n=5) and ovulatory follicles collected after in vitro maturation induction with hCG of post-vitellogenic follicles (metaphase II arrested oocytes, developmentally fully competent, n=5).
Project description:Somatic cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 samples were collected from late vitellogenic females (LV), C1 samples from post-vitellogenic females (PV), and C2 samples from females undergoing meiotic maturation (Germinal Vesicle Breakdown) Global transcriptional profiling was performed using somatic cells collected from rainbow trout ovarian follicles during in vivo oocyte developmental competence acquisition. Somatic cells were collected at 3 stages of oogenesis: NC1 stage follicles (LV, late vitellogenic, prophase I arrested oocytes, meiotically incompetent and developmentally incompetent, n=6), C1 stage follicles (PV, post-vitellogenic, prophase I arrested oocytes, meiotically competent and developmentally competent, n=16). Ovulatory follicles were also collected during oocyte maturation after in vivo induction (metaphase II arrested oocytes, developmentally fully competent, n=6).
Project description:Somatic cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 samples were collected from immature stage IV follicles, C1 samples from immature stage VI follicles, and C2 samples from in vitro matured stage VI follicles.
Project description:Cumulus cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 samples were collected from immature, unexpanded cumulus-oocytes complexes (COC) from prepubertal (3-week-old) mice, C1 samples from immature, unexpanded cumulus-oocytes complexes (COC) from adult (8-week-old) and C2 samples from mature, expanded COCs obtained from the oviduct from 8-week-old mice after standard superovulation protocol. Global transcriptional profiling was performed using cumulus cells collected from murine ovarian follicles during in vivo oocyte developmental competence acquisition. Cumulus cells were collected at 3 stages: early stage follicles (prophase I arrested oocytes, meiotically competent but developmentally incompetent, n=5), late stage follicles (prophase I arrested oocytes, meiotically competent and developmentally competent, n=5) and ovulatory follicles collected in vivo (metaphase II arrested oocytes, developmentally fully competent, n=5).
Project description:Somatic cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 cumulus cells (CC) were sampled from immature calf oocytes, C1 samples from immature cow oocytes, and C2 samples from in vivo matured cow oocytes. Global transcriptional profiling was performed using cumulus cells collected from bovine ovarian follicles during in vivo oocyte developmental competence acquisition. Cumulus cells were collected at 3 stages: early stage follicles (prophase I arrested oocytes, meiotically competent but developmentally incompetent, n=6), late stage follicles (prophase I arrested oocytes, meiotically competent and developmentally competent, n=6) and ovulatory follicles collected by ovum pick-up (OPU) in vivo (metaphase II arrested oocytes, developmentally fully competent, n=5).
Project description:Somatic cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 samples were collected from late vitellogenic females (LV), C1 samples from post-vitellogenic females (PV), and C2 samples from females undergoing meiotic maturation (Germinal Vesicle Breakdown)
Project description:Somatic cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 cumulus cells (CC) were sampled from immature calf oocytes, C1 samples from immature cow oocytes, and C2 samples from in vivo matured cow oocytes.
Project description:Cumulus cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 samples were collected from immature, unexpanded cumulus-oocytes complexes (COC) from prepubertal (3-week-old) mice, C1 samples from immature, unexpanded cumulus-oocytes complexes (COC) from adult (8-week-old) and C2 samples from mature, expanded COCs obtained from the oviduct from 8-week-old mice after standard superovulation protocol.
Project description:Microarray analysis of gene expression in 2-cell embryos obtained from developmentally competent MII oocytes or developmentally incompetent MII (NSN) oocytes. In this study we have compared the expression profile of 2-cell embryos obtained after following in vitro fertilisation of developmentally competent (control) or incompetent (NSN) MII oocytes with the aim of identifying the gene expression networks that operate at this specific stage of development.
Project description:Oocyte developmental potential is progressively obtained as females approach puberty. Therefore, oocytes derived from prepubertal females are less developmentally competent, indicated by decreased embryonic development, compared to oocytes derived from adult females. To investigate mechanisms involved in establishing oocyte cytoplasmic maturation and developmental competence, Affymetrix GeneChip microarrays were used. Keywords: oocyte developmental competence, maternal age Porcine oocytes obtained from prepubertal and adult females were collected for RNA extraction and hybridization on Affymetrix microarrays. Oocytes were aspirated from 2 to 6 mm ovarian follicles and matured in vitro. Analysis of the first extruded polar body ensured that all oocytes used in the analyses had completed nuclear maturation.
Project description:Two experiments were preformed, one for evaluating the effect of E2 exposure in males and a second experiment for comparing gene expression in the liver of non-vitellogenic females with that of vitellogenic females. The experiments designs were as follows:<br>1) Four months old zebrafish were divided into three groups consisting of 8 fish in each group: i) males (N=8) were exposed to E2 (Sigma-Aldrich, Israel) by immersion for 48 h (group E). The concentration used was 5 ?g/L (18 nM), as 3-4 ng/ml was determined to be the E2 natural concentration in the plasma of adult vitellogenic female ZF (Heiden et al 2006); ii) untreated males(N=8); iii) untreated vitellogenic females(N=8). Four replicate samples were prepared for each group and each replicate consisted of a pooled sample from livers of two fish. <br>2) In order to reveal the differences between vitellogenic and non-vitellogenic females, a second experiment was designed. One month old zebrafish were divided into two groups consisting of 32 fish in each group. Due to the small size of the liver, pooled samples from eight fish were prepared for each of the four replicates in the expression studies. The groups consisted of: i) fish that were kept under a light/dark cycle of 14/10 h for 5 weeks (N=32). with ovaries in vitellogenic stage; ii) fish that were kept under a light/dark cycle of 6/18 h for the same time period (N=32) with non-vitellogenic ovaries.