Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Identification of re-capping substrates for the cytoplasmic capping enzyme complex


ABSTRACT: The analysis of capped RNAs by massively parallel sequencing has identified a large number of previously unknown transcripts, some of which are small RNAs and others are 5M-bM-^@M-^Y truncated forms of RefSeq genes. The latter may be generated by endonuclease cleavage or by stalling of Xrn1 at defined sites. With the exception of promoter-proximal transcripts the caps on all of these are added post-transcriptionally by a cytoplasmic capping enzyme complex that includes capping enzyme and a kinase that converts 5M-bM-^@M-^Y-monophosphate ends to a diphosphate capping substrate. We previously described a modified form of capping enzyme with dominant negative activity against cytoplasmic capping (DN-cCE). A tet-inducible form of this was used to identify substrates for cytoplasmic capping by treating cytoplasmic RNA from control and induced cells with and without Xrn1. Surviving RNA was analyzed on Affymetrix Human Exon 1.0 arrays and scored for changes in probe intensity as a function of its position on each RefSeq gene to derive a factor (alpha) that could be compared between sets. Notably, transcriptome-wide changes were not evident unless RNA was treated with Xrn1. This analysis identified 2,666 uncapped mRNAs in uninduced cells, 672 mRNAs that appeared in the uncapped pool in cells expressing DN-cCE, and 835 mRNAs that were in both populations. Changes in cap status of 10 re-capping targets and 5 controls were assessed by 3 independent measures; susceptibility to Xrn1, recovery with a biotin-tagged DNA primer after ligating a complementary RNA oligonucleotide to uncapped 5M-bM-^@M-^Y ends, and binding or exclusion from a high affinity cap-binding matrix comprised of immobilized eIF4E and the corresponding binding domain of eIF4G. 3 biological replicates of 4 different samples comparing XRN1 treatment/non-treatment and Dox induction/non-induction of K294A

ORGANISM(S): Homo sapiens

SUBMITTER: Brian Kennedy 

PROVIDER: E-GEOD-36729 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability.

Mukherjee Chandrama C   Patil Deepak P DP   Kennedy Brian A BA   Bakthavachalu Baskar B   Bundschuh Ralf R   Schoenberg Daniel R DR  

Cell reports 20120823 3


The notion that decapping leads irreversibly to messenger RNA (mRNA) decay was contradicted by the identification of capped transcripts missing portions of their 5' ends and a cytoplasmic complex that can restore the cap on uncapped mRNAs. In this study, we used accumulation of uncapped transcripts in cells inhibited for cytoplasmic capping to identify the targets of this pathway. Inhibition of cytoplasmic capping results in the destabilization of some transcripts and the redistribution of other  ...[more]

Similar Datasets

2012-12-20 | GSE36729 | GEO
2022-09-25 | GSE213942 | GEO
| PRJNA153805 | ENA
2022-09-19 | PXD036414 | Pride
| PRJNA268113 | ENA
2015-08-11 | E-GEOD-64090 | biostudies-arrayexpress
2022-08-29 | E-MTAB-12110 | biostudies-arrayexpress
2019-08-21 | GSE90041 | GEO
2019-08-21 | GSE129269 | GEO
2019-08-21 | GSE129232 | GEO