Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Time course of gene expression changes after muscle contraction in spinal cord injured rats


ABSTRACT: Purpose: The goal of this study was to determine the gene expression changes that occur over 7 days in parralyzed muscle in response to isometric contraction elicited by electrical stimulation initiated 4 months after spinal cord injury and to compare such changes to those observed in a normal muscle subjected to overload. Methods: Electrical stimulation of the soleus and plantaris muscle was stimulated in female rats with complete transection of the spinal cord at the interspace between the 9th and 10th thoracic vertebrae. Stimulation was begun 16 weeks after spinal cord transection and produced near-isometric contraction of soleus, plantaris and tibialis anterior. Muscle was analyzed at 1, 2 and 7 days after starting exercise with electrical stimulation. To provide a baseline reference for gene expression at 16 weeks after spinal cord injury, muscle was also analysed from an additional group of spinal cord transected animals. One additional group of animals with a sham-spinal cord injury was included to provide information about gene expression in neurologically intact animals of similar age. In parallel studies, rats underwent bilateral gastrocnemius ablation to overload soleus and plantaris, or a sham ablation as a control. Muscle was analyzed at 1, 3 and 7 days after gastrocnemius ablation or sham-ablation. Gene expression was determined using Affymetrix Rat Exon microarrays. For each group of animals, microarray analysis was performed for soleus muscle for each of 3 separate animals, using one array per animal. Control sammples for the spinal cord injured groups included a group of animals with a Sham-spinal cord injury, and a group of spinal cord injured animals that did not get electrical stimulation. The comparator for determining fold-change expression values was the spinal cord injured group that did not receive electrical stimulation. For each day after gastrocnemius ablation, a control was included that received all procedures needed for this ablation except cutting the distal insertion of the gastrocnemius into the Achilles tendon to control for effects of the surgery on gene expression.

ORGANISM(S): Rattus norvegicus

SUBMITTER: christopher cardozo 

PROVIDER: E-GEOD-37476 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2012-06-27 | E-GEOD-30301 | biostudies-arrayexpress
2023-12-05 | GSE243038 | GEO
2020-05-11 | GSE138637 | GEO
| PRJNA114467 | ENA
2021-02-16 | GSE155610 | GEO
2013-03-30 | GSE37476 | GEO
2023-07-01 | GSE214291 | GEO
2020-07-01 | GSE117440 | GEO
2022-12-23 | MSV000090967 | MassIVE
2014-10-04 | E-GEOD-62028 | biostudies-arrayexpress