Gene expression data from Duchenne muscular dystrophy patients versus controls
Ontology highlight
ABSTRACT: gene expression data is from RNA extracted from muscle biopsy samples taken from boys with Duchenne muscular dystrophy (DMD) or pathologically normal controls (CTRL). Each muscle biospy was examined in detail histologically by Dr. Eric P. Hoffman at Children's National Medical Center to determine stage of disease. In addition, the absence or presence of dystrophin was determined via western blot analyses. We utilized Human U133 2.0 arrays to examine the transcriptome of each muscle, and then we compared differential gene expression between DMD patient muscles and CTRL muscules. We set the FDR p value for significance at 0.05 and at least a 1.5 fold difference in DMD/CTRL compared differential gene exrpression between DMD versus Control
Project description:gene expression data is from RNA extracted from muscle biopsy samples taken from boys with Duchenne muscular dystrophy (DMD) or pathologically normal controls (CTRL). Each muscle biospy was examined in detail histologically by Dr. Eric P. Hoffman at Children's National Medical Center to determine stage of disease. In addition, the absence or presence of dystrophin was determined via western blot analyses. We utilized Human U133 2.0 arrays to examine the transcriptome of each muscle, and then we compared differential gene expression between DMD patient muscles and CTRL muscules. We set the FDR p value for significance at 0.05 and at least a 1.5 fold difference in DMD/CTRL
Project description:Large animal models for Duchenne muscular dystrophy (DMD) are indispensible for preclinical evaluation of novel diagnostic procedures and treatment strategies. To evaluate functional consequences of Duchenne muscular dystrophy (DMD) in skeletal muscle and myocardium, we used a new genetically engineered dystrophin KO pig model displaying hallmarks of human DMD. Heart and skeletal muscle tissue samples of DMD pigs and wild-type (WT) controls at three different ages were analyzed by label-free proteomics.
Project description:Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. In this project, proteomics data from skeletal muscle of a genetically engineered DMD pig model were investigated in order to confirm muscular fibrosis and MSOT signals.
Project description:Duchenne muscular dystrophy (DMD) is caused by genetic deficiency of dystrophin and characterized by massive structural and functional changes of skeletal muscle tissue, leading to terminal muscle failure. In this project, proteomics data from skeletal muscle of a genetically engineered DMD pig model treated by somatic gene editing are shown.
Project description:Duchenne muscular dystrophy is an X-linked monogenic disease caused by mutations in the dystrophin gene (DMD) and characterized by progressive muscle weakness leading to loss of ambulation and significantly decreased life expectancy. Since the current standard of care for Duchenne muscular dystrophy is to merely treat symptoms, there is a dire need for novel treatment modalities that can correct the underlying genetic mutations. While several gene replacement therapies are being explored in clinical trials, one emerging approach that can directly correct mutations in genomic DNA is base editing. We have recently developed CRISPR-SKIP, a base editing strategy to induce permanent exon skipping by introducing C>T or A>G mutations at splice acceptors in genomic DNA, which can be utilized therapeutically to recover dystrophin expression when a genomic deletion leads to an out-of-frame DMD transcript. We now demonstrate that CRISPR-SKIP can be adapted to correct some forms of Duchenne muscular dystrophy by disrupting the splice acceptor in human DMD exon 45 with high efficiency, which enables open reading frame recovery and restoration of dystrophin expression. We also demonstrate that AAV-delivered split-intein base editors edit the splice acceptor of DMD exon 45 in cultured human cells and in vivo, highlighting the therapeutic potential of this strategy.
Project description:Duchenne muscular dystrophy (DMD) is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. In this study we developed a novel strategy for reframing DMD mutations by CRISPR-mediated large-scale excision of exons 46–54. We compared this approach to other DMD rescue strategies using DMD patient-derived primary muscle-derived stem cells (MDSCs) and found that it showed the highest efficiency in terms of restoring of dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cpf1)-mediated genome editing could correct DMD mutation with higher specificity than CRISPR-associated protein 9 (Cas9). Furthermore, A patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Dystrophin expression levels were increased by 10%–30% in human DMD muscle fibers. The restored dystrophin in vivo was functional, as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. This study provides a sensitive indicator for in vivo efficacy of gene editing and lays the foundation for a clinical trial of DMD treatment with gene editing technology.
Project description:Duchenne muscular dystrophy (DMD) is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. In this study we developed a novel strategy for reframing DMD mutations by CRISPR-mediated large-scale excision of exons 46–54. We compared this approach to other DMD rescue strategies using DMD patient-derived primary muscle-derived stem cells (MDSCs) and found that it showed the highest efficiency in terms of restoring of dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cpf1)-mediated genome editing could correct DMD mutation with higher specificity than CRISPR-associated protein 9 (Cas9). Furthermore, A patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Dystrophin expression levels were increased by 10%–30% in human DMD muscle fibers. The restored dystrophin in vivo was functional, as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. This study provides a sensitive indicator for in vivo efficacy of gene editing and lays the foundation for a clinical trial of DMD treatment with gene editing technology.
Project description:Duchenne muscular dystrophy (DMD) is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. In this study we developed a novel strategy for reframing DMD mutations by CRISPR-mediated large-scale excision of exons 46–54. We compared this approach to other DMD rescue strategies using DMD patient-derived primary muscle-derived stem cells (MDSCs) and found that it showed the highest efficiency in terms of restoring of dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cpf1)-mediated genome editing could correct DMD mutation with higher specificity than CRISPR-associated protein 9 (Cas9). Furthermore, A patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Dystrophin expression levels were increased by 10%–30% in human DMD muscle fibers. The restored dystrophin in vivo was functional, as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. This study provides a sensitive indicator for in vivo efficacy of gene editing and lays the foundation for a clinical trial of DMD treatment with gene editing technology.
Project description:Duchenne muscular dystrophy (DMD) is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. In this study we developed a novel strategy for reframing DMD mutations by CRISPR-mediated large-scale excision of exons 46–54. We compared this approach to other DMD rescue strategies using DMD patient-derived primary muscle-derived stem cells (MDSCs) and found that it showed the highest efficiency in terms of restoring of dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cpf1)-mediated genome editing could correct DMD mutation with higher specificity than CRISPR-associated protein 9 (Cas9). Furthermore, A patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Dystrophin expression levels were increased by 10%–30% in human DMD muscle fibers. The restored dystrophin in vivo was functional, as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. This study provides a sensitive indicator for in vivo efficacy of gene editing and lays the foundation for a clinical trial of DMD treatment with gene editing technology.
Project description:Duchenne muscular dystrophy (DMD) is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. In this study we developed a novel strategy for reframing DMD mutations by CRISPR-mediated large-scale excision of exons 46–54. We compared this approach to other DMD rescue strategies using DMD patient-derived primary muscle-derived stem cells (MDSCs) and found that it showed the highest efficiency in terms of restoring of dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cpf1)-mediated genome editing could correct DMD mutation with higher specificity than CRISPR-associated protein 9 (Cas9). Furthermore, A patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Dystrophin expression levels were increased by 10%–30% in human DMD muscle fibers. The restored dystrophin in vivo was functional, as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. This study provides a sensitive indicator for in vivo efficacy of gene editing and lays the foundation for a clinical trial of DMD treatment with gene editing technology.