ABSTRACT: Bile acids are not only physiological detergents facilitating nutrient absorption, but also signaling molecules regulating metabolic homeostasis. We reported recently that transgenic expression of CYP7A1 in mice stimulated bile acid synthesis and prevented Western diet-induced obesity, insulin resistance and hepatic steatosis. The aim of this experiment is to determine the impact of induction of hepatic bile acid synthesis on liver metabolism by determining hepatic gene expression profile in CYP7A1 transgenic mice. CYP7A1 transgenic mice and wild type control mice were fed either standard chow diet or high fat high cholesterol Western diet for 4 month. Hepatic gene expressions were measured by microarray analysis. Our results indicate that hepatic bile acid synthesis is closely linked to cholesterogenesis and lipogenesis, and maintaining bile acid homeostasis is improtant in hepatic metabolic homeostasis. Male aged matched (~ 12-14 weeks) CYP7A1 transgenic mice and their wild type control littermates were fed a standard chow diet or a high fat (42%) high cholesterol (0.2%) diet (Harlan Teklad #88137) for 4 month Four groups (4 mice/group) are included in the experiments: Group 1: WT _ Chow Group 2: CYP7A1-tg + chow Group 3: WT + Western diet Group 4: CYP7A1-tg _ Western diet Total liver mRNA was isolated with a RNeasy kit (Qiagen) and used for microarray analysis.
Project description:Bile acids are not only physiological detergents facilitating nutrient absorption, but also signaling molecules regulating metabolic homeostasis. We reported recently that transgenic expression of CYP7A1 in mice stimulated bile acid synthesis and prevented Western diet-induced obesity, insulin resistance and hepatic steatosis. The aim of this experiment is to determine the impact of induction of hepatic bile acid synthesis on liver metabolism by determining hepatic gene expression profile in CYP7A1 transgenic mice. CYP7A1 transgenic mice and wild type control mice were fed either standard chow diet or high fat high cholesterol Western diet for 4 month. Hepatic gene expressions were measured by microarray analysis. Our results indicate that hepatic bile acid synthesis is closely linked to cholesterogenesis and lipogenesis, and maintaining bile acid homeostasis is improtant in hepatic metabolic homeostasis.
Project description:Transcript data from livers from fasted-state BXD strains on chow or high fat diet We used microarrays to compare the hepatic expression differences across the BXD strain family and across two diverse diets 29-week-old male mice were fasted overnight (6pm-9am), anesthetized under isoflurane, and perfused, then livers were snap-frozen in liquid nitrogen for RNA extraction and RNEasy cleanup. Each dietary and strain cohort consisted of ~5 animals which were prepared independently then pooled evenly by M-BM-5g RNA before the Affymetrix arrays were run.
Project description:Transcript data from brown adipose tissue from fasted-state male BXD strains on chow or high fat diet We used microarrays to compare the brown adipose expression differences across males from the BXD strain family and across two diverse diets 29-week-old male mice were fasted overnight (6pm-9am), anesthetized under isoflurane, and perfused, then brown adipose tissue was snap-frozen in liquid nitrogen for RNA extraction and RNEasy cleanup. Each dietary and strain cohort consisted of ~5 animals which were prepared independently then pooled evenly by M-BM-5g RNA before the Affymetrix arrays were run.
Project description:Biliary reverse cholesterol transport (RCT) plays a crucial role in cholesterol clearance and regulation of atherogenesis. San-wei-tan-xiang capsule (SWTX), a traditional Chinese medicine, has shown potential in inhibiting atherogenesis by increasing high-density lipoprotein (HDL) cholesterol levels and promoting macrophage-mediated cholesterol efflux. However, the specific role of HDL-driven cholesterol metabolism in the anti-atherogenic effects of SWTX remains unclear. In this study, liquid chromatography coupled with tandem mass spectrometry was used to analyze the circulating metabolic profile, and RNA sequencing was performed on liver samples from ApoE−/− mice fed a cholesterol-enriched diet. We found that SWTX treatment induced significantly differential expression of metabolites and genes involved in cholesterol and lipid metabolism, as well as bile secretion pathways, which are critical for HDL-driven biliary RCT. Furthermore, alterations in L-carnitine and choline metabolism induced by SWTX treatment was involved in the atheroprotective effects of SWTX. Notably, SWTX treatment led to a significant increase in the expression of cholesterol 7α-hydroxylase (CYP7A1), a key enzyme involved in bile acid synthesis during atherogenesis. Additionally, the expression of CYP7A1 and CYP7A1-mediated bile acid secretion were enhanced by the addition of choline in hepatic cells, suggesting that SWTX-induced elevation of choline metabolic products may contribute to the upregulation of CYP7A1 and CYP7A1-mediated biliary RCT. Overall, SWTX demonstrated its ability to attenuate atherosclerotic plaque formation, which can be attributed to alterations in carnitine and choline metabolism, as well as the modulation of CYP7A1-mediated HDL-driven biliary RCT.
Project description:Transcript data from quadriceps skeletal muscle from fasted-state male BXD strains on Quadriceps, Chow or Quadriceps, High fat diet We used microarrays to compare the skeletal muscle expression differences across males in the BXD strain family and across two diverse diets 29-week-old male mice were fasted overnight (6pm-9am), anesthetized under isoflurane, and perfused, then quadriceps were snap-frozen in liquid nitrogen for RNA extraction and RNEasy cleanup. Each dietary and strain cohort consisted of ~5 animals which were prepared independently then pooled evenly by M-BM-5g RNA before the Affymetrix arrays were run.
Project description:Deoxycholic acid (DCA) is a secondary bile acid produced by a small number of commensal species of bacteria present in the mammalian gut. Elevated DCA concentration correlates with disease states including colon cancer and cholesterol gallstones, but the associated mechanisms are not fully understood. Both primary and secondary bile acids are also capable of affecting gene expression through nuclear receptors such as FXR. To better understand the impact of a commensal-derived secondary bile acid on host metabolism we fed DCA to germ-free (GF) mice, which normally lack DCA, and compared the hepatic transcriptomes of bile acid fed GF mice to GF mice receiving a control diet, as well as to those of conventionally housed control animals. Interestingly, the feeding of DCA to GF mice, but not the feeding of cholic acid (CA) from which DCA is derived, results in an up-regulation of genes of cholesterol biosynthetic pathways. GF mice normally have elevated hepatic cholesterol compared to conventionally housed mice. Despite increase in the expression of cholesterol biosynthetic genes, the DCA fed GF mice showed a markedly decreased level of hepatic cholesterol equivalent to the hepatic cholesterol concentration of conventionally colonized animals. Total cholesterol in the serum was unaffected by DCA, but there was a decrease in the HDL lipoprotein fraction as well as an increase in the non-HDL lipoprotein fraction of the serum cholesterol. DCA, but not CA, is sufficient to modulate host lipoprotein metabolism. Taken together, these results suggests that a minor component of the gut microbiome has a significant impact on cholesterol homeostasis through secondary metabolism of bile acids and suggests a possible therapeutic intervention route through the microbial metabolic pathways. two mouse strains, three diets, one time point
Project description:The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for three days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic β-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by three days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavourable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet. Keywords: Hepatic gene expression Two-condition experiment. Biological replicates: 4 male rat livers from rats on a standard diet, 4 male rat livers from rats on a cocoa butter diet, 4 male rat livers from rats on a high-fat (safflower oil) diet. One replicate per array.
Project description:Bile acids are multifunctional signaling molecules that play significant roles in maintaining microbial homeostasis. N6-methyladenine (m6A), the most abundant epitranscriptomic modification, mediates various biological processes by modulating RNA metabolism. However, the precise regulatory mechanisms of m6A methylation in bile acid metabolism, and its downstream effects on microbiota remain unclear. In this study, liver-specific Mettl14 knockout (Mettl14-LKO) reshaped bile acid profile and expression levels of protein related to bile acid metabolism, namely CYP7A1, FXR, and BSEP. M6A-seq data revealed m6A methylated peaks on CYP7A1. Mettl14-LKO significantly elevated expression of m6A “reader” IGF2BP3. Knockdown of IGF2BP3 inhibited CYP7A1 expression by decreasing mRNA stability. Mechanistically, Mettl14-LKO promoted bile acid synthesis by upregulating CYP7A1 expression in an m6A-IGF2BP3-dependent manner. Interestingly, Mettl14-LKO reduced bile acid content in ileum due to decreased BSEP level in liver. Noteworthy, we discovered for the first time that Mettl14 knockout in the liver altered fecal microbiota composition. Specifically, it changed the abundance of Cyanobacteria and Patescibacteria at phylum level, and Lachnochostridium, Candidatus-Saccharimonas, and Roseburia at genera level. Remarkably, Roseburia was negatively correlated with the bile acid levels and CYP7A1 expression. Our findings provide new insights into the role of METTL14 in regulating bile acid homeostasis and its impact on fecal microbiota. Roseburia emerges as a potential target for addressing metabolic diseases linked to disrupted METTL14 signaling.
Project description:The aim of this study was to examine the effect of genetic disruption of the circadian clock on gene expression in the cortex across timepoints. Circadian clock protein regulate many critical aspects of cellular function, and Bmal1 knockout mice develop severe neuroinflammation, suggesting a role for circadian clock gene in brain homeostatic function. We compared brain-specific Bmal1 KO mice (Nestin-Cre;Bmal1(flox/flox) with Per1/2 double mutant mice, in order to assess the effects of deletion of the positive and negative limbs of the core clock. 11mo Cre-, NestinCre+/-;Bmal1(fx/fx), or Per1brdm,Per2brdm mice were entrained to 12h light:dark conditions with lights on at 6am for one month, then placed in constant darkness for 24 hours, after which mice were harvested at 6am (CT6) or 6pm (CT18), still in the dark. Mice were anesthetized in the dark, then perfused briefly with PBS+heparin. The brain was then quickly dissected on a cold surface, and the cerebral cortex flash frozen in liquid nitrogen. Cortex samples were mechanically dissociated with a Qiashredder device, then extracted with chloroform and diluted in 70% ethanol. RNA was extracted using Qiagen RNEasy kit according to manufacturers specifications. cDNAs were chemically labeled with Kreatech ULS RNA labeling kit (Kreatech Diagnostics) and Cy5-labeled cDNAs were hybridized to Agilent Mouse v2 4x44K microarrays (G4846A-026655).
Project description:Accumulation of excess nutrients hampers proper liver function and is linked to non-alcoholic fatty liver disease (NAFLD) in obesity. However, the signals responsible for an impaired adaptation of hepatocytes to obesogenic dietary cues remain still largely unknown. Post-translational modification by the Small Ubiquitin-like Modifier (SUMO), allows for adynamic regulation of numerous processes including transcriptional reprograming. We demonstrate that specific SUMOylation of transcription factor Prox1 represents a nutrient-sensitive determinant of hepatic fasting metabolism. Prox1 was highly SUMOylated on lysine 556 in the liver of ad libitum and re-fed mice, while this modification was abolished upon fasting. In the context of diet-induced obesity, Prox1 SUMOylation became less sensitive to fasting cues. The hepatocyte-selective knock-in of a SUMOylation-deficient Prox1 mutant into mice fed a high-fat/high-fructose diet led to a reduction of systemic cholesterol levels, associated with the induction of liver bile acid detoxifying pathways during fasting. The generation of tools to maintain the nutrient-sensitive SUMO-switch on Prox1 may thus contribute to the development of “fasting-based” approaches for the preservation of metabolic health.