Transcriptional profiling during rainbow trout ovarian development
Ontology highlight
ABSTRACT: The study aimed to characterize gene expression in rainbow trout ovary during ovarian development from immature to mature stages. Whole ovary were collected at the following stages: immature pre-vitelogenesis (IMM), mid-vitellogenesis (MV), late vitellogenesis (LV), post-vitellogenesis (PV) and mature while meiotic maturation is in progress (MAT). Gene expression in rainbow trout ovary was measured at 5 different stages (immature, mid-vitellogenesis, late vitellogenesis, post-vitellogenesis and mature). Three to four biological replicates were used for each stages.
Project description:The study aimed to characterize miRNA expression in rainbow trout ovary during ovarian development from immature to mature stages. Whole ovary were collected at the following stages: immature pre-vitelogenesis (IMM), mid-vitellogenesis (MV), late vitellogenesis (LV), post-vitellogenesis (PV) and mature while meiotic maturation is in progress (MAT). miRNA expression in rainbow trout ovary was measured at 5 different stages (immature, mid-vitellogenesis, late vitellogenesis, post-vitellogenesis and mature). Two to three biological replicates were used for each stages.
Project description:The study aimed to characterize miRNA expression in rainbow trout ovary during ovarian development from immature to mature stages. Whole ovary were collected at the following stages: immature pre-vitelogenesis (IMM), mid-vitellogenesis (MV), late vitellogenesis (LV), post-vitellogenesis (PV) and mature while meiotic maturation is in progress (MAT).
Project description:The study aimed to characterize gene expression in rainbow trout ovary during ovarian development from immature to mature stages. Whole ovary were collected at the following stages: immature pre-vitelogenesis (IMM), mid-vitellogenesis (MV), late vitellogenesis (LV), post-vitellogenesis (PV) and mature while meiotic maturation is in progress (MAT).
Project description:We have constructed a rainbow trout high-density oligonucleotide microarray by using all the available tentative consensus (TC) sequences from the Rainbow Trout Gene Index database (The Computational Biology and Functional Genomics Lab., Dana Farber Cancer Institute and Harvard School of Public Health). The Rainbow Trout Gene Index integrates research data from all available international rainbow trout genomic research projects. The newly designed microarray incorporates 37,394 unique transcript-specific oligonucleotide probes, 60-mer long each. The microarray was printed according to our design by Agilent Technologies using the 4 X 44-design format and contains 1417 Agilent control spots. The performance of the new microarray platform was evaluated by analyzing gene expression associated with the rainbow trout vitellogenesis-induced muscle atrophy. These chips can be ordered from Agilent using design number 016320. This microarray is anticipated to open new avenues of research that will aid in the development of novel strategies to enhance growth efficiency and quality in salmonid species. Keywords: Development of an oligo-array for rainbow trout The performance of the new microarray platform was evaluated by analyzing transcriptome response associated with the rainbow trout vitellogenesis-induced muscle atrophy. Severe muscle deterioration accompanies the physiological responses of the energetic demands of the rainbow trout spawning/vitellogenesis. Atrophying muscle of fertile fish had 11% less extractable muscle (g/bw) and 11% less protein content compared to non-atrophying muscle of sterile fish (p<0.01). The rainbow trout was used to profile changes in gene expression of atrophying muscles. Gene expression levels were determined by comparing the amount of mRNA transcript present in the experimental sample (fertile fish) to the control (sterile fish). RNAs isolated from each experimental fish were run on separate microarrays in independent experiments, with no pooling. A total of 8 fish were used in the microarray experiments (4 replicates x 2 groups). Fluorophors (Cy3 and Cy5) were randomly assigned to RNA from each of the atrophying and nonatrophying muscles to limit the dye effect.
Project description:We have constructed a rainbow trout high-density oligonucleotide microarray by using all the available tentative consensus (TC) sequences from the Rainbow Trout Gene Index database (The Computational Biology and Functional Genomics Lab., Dana Farber Cancer Institute and Harvard School of Public Health). The Rainbow Trout Gene Index integrates research data from all available international rainbow trout genomic research projects. The newly designed microarray incorporates 37,394 unique transcript-specific oligonucleotide probes, 60-mer long each. The microarray was printed according to our design by Agilent Technologies using the 4 X 44-design format and contains 1417 Agilent control spots. The performance of the new microarray platform was evaluated by analyzing gene expression associated with the rainbow trout vitellogenesis-induced muscle atrophy. These chips can be ordered from Agilent using design number 016320. This microarray is anticipated to open new avenues of research that will aid in the development of novel strategies to enhance growth efficiency and quality in salmonid species. Keywords: Development of an oligo-array for rainbow trout
Project description:A comparison of "maturing" and "prespawn" ovarian and testicular transciptomes was performed to determine the genes that are involved in regulating gametic and accessory cell function during maturation and development of the rainbow trout gonad. To identify some fo the genes involved in these processee, total RNA was compared between three-year-old normal vs two-year-old normal (maturing) and three-year-old normal vs two-year-old precocious (prespawn) gonadal tissue. Three biological replicates for both "maturing" and "prespawn" rainbow trout ovary and testis with corresponding dye flips.
Project description:This SuperSeries is composed of the following subset Series: GSE16889: Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of the brain transcriptome GSE16897: Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of the liver transcriptome GSE16901: Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of the muscle transcriptome Refer to individual Series
Project description:Metabolic processes and sexual maturation closely interact during the long-distance reproductive migration of many fish species to their spawning grounds. In the present study, we have for the first time used exercise experimentally to investigate the effects on sexual maturation in rainbow trout. Pubertal autumn-spawning seawater-raised female rainbow trout Oncorhynchus mykiss (n=26; 50-cm, 1.5-kg) were rested or swum at a near optimal speed of 0.75 body-lengths per second in a 6,000 L swim-flume under natural reproductive conditions (16 °C fresh-water, starvation, 8h-light:16h-dark photoperiod). Fish were sampled after arrival and subsequently after 10 days (resting or swimming 307 km) and 20 days (resting or swimming 636 km). Ovarian development was significantly reduced in the swimmers. Analysis of the expression of key factors in the reproductive axis included pituitary kiss1-receptor, lh and fsh and ovarian lh-receptor, fsh-receptor, aromatase and vitellogenin-receptor (vtgr). Swimmers had lower pituitary lh and ovarian vtgr expression than resters. Furthermore, the number of late vitellogenic oocytes was lower in swimmers than in resters, probably resulting from the lower vtgr expression, and vitellogenin plasma levels were higher. Therefore, swimming exercise suppresses oocyte development possibly by inhibiting vitellogenin uptake. Transcriptomic changes that occurred in the ovary of exercised fish were investigated using a salmonid cDNA microarray platform. Protein biosynthesis and energy provision were among the sixteen functional categories that were all down-regulated in the ovary. Down-regulation of the transcriptomic response in the ovary illustrates the priority of energy reallocation and will save energy to fuel exercise. A swimming-induced ovarian developmental suppression at the start of vitellogenesis during long-term reproductive migration may be a strategy to avoid precocious muscle atrophy.
Project description:The rainbow trout, Oncorhynchus mykiss, has a male heterogametic XY genetic system, and this knowledge can be used to produce experimentally all male or all female genetic populations using males with new genotypes (XX and YY males). These monosex populations have been widely used for sex differentiation studies because they give the opportunity to work on undifferentiated gonads for which the natural fate as testis or ovary is known a priori. Using as a resource the availability of a lot of expressed sequenced tags (ESTs) sequencing projects in trout, we designed and built a micro-array in order to characterize, at the pangenomic scale, rainbow trout natural gonadal differentiation as well as the mechanisms by which androgen masculinize the embryonic ovary. We choose a Nylon membrane array technique used for large-scale gene expression profiling with low cost, easy customization and high sensitivity, which is important when a limiting amount of RNA is available. Keywords: time course of natural and androgen induced gonadal sex differentiation
Project description:The sea-run phenotype of rainbow trout (Oncorhynchus mykiss), like other anadromous salmonids, present a juvenile stage fully adapted to life in freshwater known as parr. Development in freshwater is followed by the smolt stage, where preadaptations needed for seawater life are developed making fish ready to migrate to the ocean, after which event they become post-smolts. While these three life stages have been studied using a variety of approaches, proteomics has never been used for such purpose. The present study characterised the blood plasma proteome of parr, smolt and post-smolt rainbow trout using a gel electrophoresis liquid chromatography tandem mass spectrometry approach alone or in combination with low-abundant protein enrichment technology (combinatorial peptide ligand library). In total, 1,822 proteins were quantified, 17.95% of them being detected only in plasma post enrichment. Across all life stages, the most abundant proteins were ankyrin-2, DNA primase large subunit, actin, serum albumin, apolipoproteins, hemoglobin subunits, hemopexin-like proteins and complement C3. When comparing the different life stages, 17 proteins involved in mechanisms to cope with hyperosmotic stress and retinal changes, as well as the downregulation of nonessential processes in smolts, were significantly different between parr and smolt samples. On the other hand, 11 proteins related to increased growth in post-smolts, and also related to coping with hyperosmotic stress and to retinal changes, were significantly different between smolt and post-smolt samples. Overall, this study presents a series of proteins with the potential to complement current seawater-readiness assessment tests in rainbow trout, which can be measured non-lethally in an easily accessible biofluid. Furthermore, this study represents a first in-depth characterisation of the rainbow trout blood plasma proteome, having considered three life stages of the fish and used both fractionation alone or in combination with enrichment methods to increase protein detection.