Characteristics of Cross-Hybridization and Cross-Alignment in Pseudo-Xenograft samples by RNA-Seq and Microarrays [Illumina MouseWG-6 v2.0]
Ontology highlight
ABSTRACT: In order to study molecular changes in the stroma from tissue samples it is recommended to separate tumor tissue from stromal tissue. This is particularly relevant to mouse tumor xenograft models where tumor, particularly metastatic tumors, can be small and difficult to separate from the host tissue. In our research we compared qualitatively the ability of high-throughput mRNA sequencing, RNA-Seq, and microarrays to detect tumor (human) and stromal (mouse) expression from mixed tumor-stromal samples in terms of the genes and pathways that are involved in cross-alignment (RNA-Seq) and cross-hybridization (microarrays). Human samples consisted of total RNA obtained from MDA-MB-231 human breast carcinoma cell line and isolated from three independent cultures of sub-confluent MDA-MB-231 cell lines in exponential phase of growth. Mouse samples were obtained from NOD scid gamma mice, and normal lung tissue was harvested from three independent age-matched mice.
Project description:In order to study molecular changes in the stroma from tissue samples it is recommended to separate tumor tissue from stromal tissue. This is particularly relevant to mouse tumor xenograft models where tumor, particularly metastatic tumors, can be small and difficult to separate from the host tissue. In our research we compared qualitatively the ability of high-throughput mRNA sequencing, RNA-Seq, and microarrays to detect tumor (human) and stromal (mouse) expression from mixed tumor-stromal samples in terms of the genes and pathways that are involved in cross-alignment (RNA-Seq) and cross-hybridization (microarrays). Human samples consisted of total RNA obtained from MDA-MB-231 human breast carcinoma cell line and isolated from three independent cultures of sub-confluent MDA-MB-231 cell lines in exponential phase of growth. Mouse samples were obtained from NOD scid gamma mice, and normal lung tissue was harvested from three independent age-matched mice.
Project description:In order to study molecular changes in the stroma from tissue samples it is recommended to separate tumor tissue from stromal tissue. This is particularly relevant to mouse tumor xenograft models where tumor, particularly metastatic tumors, can be small and difficult to separate from the host tissue. In our research we compared qualitatively the ability of high-throughput mRNA sequencing, RNA-Seq, and microarrays to detect tumor (human) and stromal (mouse) expression from mixed tumor-stromal samples in terms of the genes and pathways that are involved in cross-alignment (RNA-Seq) and cross-hybridization (microarrays). Human samples consisted of total RNA obtained from MDA-MB-231 human breast carcinoma cell line and isolated from three independent cultures of sub-confluent MDA-MB-231 cell lines in exponential phase of growth. Mouse samples were obtained from NOD scid gamma mice, and normal lung tissue was harvested from three independent age-matched mice.
Project description:In order to study molecular changes in the stroma from tissue samples it is recommended to separate tumor tissue from stromal tissue. This is particularly relevant to mouse tumor xenograft models where tumor, particularly metastatic tumors, can be small and difficult to separate from the host tissue. In our research we compared qualitatively the ability of high-throughput mRNA sequencing, RNA-Seq, and microarrays to detect tumor (human) and stromal (mouse) expression from mixed tumor-stromal samples in terms of the genes and pathways that are involved in cross-alignment (RNA-Seq) and cross-hybridization (microarrays).
Project description:In order to study molecular changes in the stroma from tissue samples it is recommended to separate tumor tissue from stromal tissue. This is particularly relevant to mouse tumor xenograft models where tumor, particularly metastatic tumors, can be small and difficult to separate from the host tissue. In our research we compared qualitatively the ability of high-throughput mRNA sequencing, RNA-Seq, and microarrays to detect tumor (human) and stromal (mouse) expression from mixed tumor-stromal samples in terms of the genes and pathways that are involved in cross-alignment (RNA-Seq) and cross-hybridization (microarrays).
Project description:In order to study molecular changes in the stroma from tissue samples it is recommended to separate tumor tissue from stromal tissue. This is particularly relevant to mouse tumor xenograft models where tumor, particularly metastatic tumors, can be small and difficult to separate from the host tissue. In our research we compared qualitatively the ability of high-throughput mRNA sequencing, RNA-Seq, and microarrays to detect tumor (human) and stromal (mouse) expression from mixed tumor-stromal samples in terms of the genes and pathways that are involved in cross-alignment (RNA-Seq) and cross-hybridization (microarrays).
Project description:Identifying the gene expression alterations that occur in both the tumor and stroma is essential to understanding tumor biology. We have developed a dual-species microarray analysis method that allows the dissection of both tumor and stromal gene expression profiles from xenograft models, based on limited interspecies cross-hybridization on Illumina gene expression beadchips. This methodology allows for simultaneous genome-wide analysis of gene expression profiles of both tumor cells and the associated stromal tissue. Data is provided regarding the crosshybridization of mouse liver RNA on human microarray, and MDA-MB-231 breast cancer cell line RNA on mouse microarray. Data is also provided for comparisons of MDA-MB-231 gene expression in vitro vs. in vivo, and mouse liver gene expression in control mice vs. stroma from MDA-MB-231 xenograft liver metastasis in tumor bearing mice
Project description:Identifying the gene expression alterations that occur in both the tumor and stroma is essential to understanding tumor biology. We have developed a dual-species microarray analysis method that allows the dissection of both tumor and stromal gene expression profiles from xenograft models, based on limited interspecies cross-hybridization on Illumina gene expression beadchips. This methodology allows for simultaneous genome-wide analysis of gene expression profiles of both tumor cells and the associated stromal tissue. Data is provided regarding the crosshybridization of mouse liver RNA on human microarray, and MDA-MB-231 breast cancer cell line RNA on mouse microarray. Data is also provided for comparisons of MDA-MB-231 gene expression in vitro vs. in vivo, and mouse liver gene expression in control mice vs. stroma from MDA-MB-231 xenograft liver metastasis in tumor bearing mice A total of 18 samples were analyzed. Samples consist of 6 different types with each type in triplicate. Types are (1) MDA-MB-231 cell line grown in vitro and arrayed on mouse chips, (2) mouse liver from NOD/SCID mice arrayed on human chips, (3) MDA-MB-231 cell line grown in vitro arrayed on human chips, (4) MDA-MB-231 xenograft liver metastasis arrayed on human chips, (5) mouse liver from NOD/SCID mice arrayed on mouse chips, and (6) MDA-MB-231 xenograft liver metastasis arrayed on mouse chips. The overall design had three objectives: (1) to determine crosshybridizing probes based on sample types 1, 2, 3, and 5, (2) detect stromal and tumor expression using sample types 4 and 6, and (3) determine genes differentially expressed in tumor or metastasis compared to normal by comparing sample types 3 and 4 and comparing sample types 1 and 5.