Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Non-coding transcription within the Igh distal VH region at PAIR elements affects the 3D structure of the Igh locus in pro-B cells


ABSTRACT: Non-coding sense and antisense germline transcription within the immunoglobulin heavy chain locus precedes V(D)J recombination and has been proposed to be associated with Igh locus accessibility, although its precise role remains elusive. However, no global analysis of germline transcription throughout the Igh locus has been done. Therefore, we performed directional RNAseq, demonstrating the locations and extent of both sense and antisense transcription throughout the Igh locus. Surprisingly, the majority of antisense transcripts are localized around two PAIR elements in the distal IghV region. Importantly, long-distance loops measured by 3C are observed between these two active PAIR promoters and Eμ, the start site of Iμ germline transcription, in a lineage- and stage-specific manner, even though this antisense transcription is Eμ-independent. YY1-/- pro-B cells are greatly impaired in distal VH gene rearrangement and Igh locus compaction, and we demonstrate that YY1 deficiency greatly reduces antisense transcription and PAIR-Eμ interactions. ChIP-seq shows high level YY1 binding only at Eμ, but low levels near some antisense promoters. PAIR-Eμ interactions are not disrupted by DRB, which blocks transcription elongation without disrupting transcription factories once they are established, but the looping is reduced after heat shock treatment, which disrupts transcription factories. We propose that transcription-mediated interactions, most likely at transcription factories, initially compact the Igh locus, bringing distal VH genes close to the DJH rearrangement, which is adjacent to Eμ. Therefore, we hypothesize that one key role of non-coding germline transcription is to facilitate locus compaction, allowing distal VH genes to undergo efficient rearrangement. In order to determine the amount and location of sense and antisense non-coding RNA in the Igh locus, we prepared total RNA from CD19+ RAG1-/- pro-B cells. Samples were either pre-enriched in custom Agilent arrays, or directly sequenced. Data from one sample for each condition is included as reflected in the publication.

ORGANISM(S): Mus musculus

SUBMITTER: Lana Schaffer 

PROVIDER: E-GEOD-40984 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Noncoding transcription within the Igh distal V(H) region at PAIR elements affects the 3D structure of the Igh locus in pro-B cells.

Verma-Gaur Jiyoti J   Torkamani Ali A   Schaffer Lana L   Head Steven R SR   Schork Nicholas J NJ   Feeney Ann J AJ  

Proceedings of the National Academy of Sciences of the United States of America 20121001 42


Noncoding sense and antisense germ-line transcription within the Ig heavy chain locus precedes V(D)J recombination and has been proposed to be associated with Igh locus accessibility, although its precise role remains elusive. However, no global analysis of germ-line transcription throughout the Igh locus has been done. Therefore, we performed directional RNA-seq, demonstrating the locations and extent of both sense and antisense transcription throughout the Igh locus. Surprisingly, the majority  ...[more]

Similar Datasets

2012-10-18 | GSE40984 | GEO
2012-10-18 | GSE40822 | GEO
2012-10-18 | E-GEOD-40822 | biostudies-arrayexpress
2013-09-30 | GSE43008 | GEO
2013-09-30 | E-GEOD-43008 | biostudies-arrayexpress
2011-02-11 | E-GEOD-27074 | biostudies-arrayexpress
2011-02-11 | E-GEOD-27214 | biostudies-arrayexpress
2011-02-11 | GSE27214 | GEO
2011-02-11 | GSE27074 | GEO
2013-06-01 | E-GEOD-47128 | biostudies-arrayexpress