In vivo NCL-targeting affects breast cancer aggressiveness through miRNA regulation
Ontology highlight
ABSTRACT: This SuperSeries is composed of the following subset Series: GSE41971: In vivo NCL-targeting affects breast cancer aggressiveness through miRNA regulation [NanoString] GSE41972: In vivo NCL-targeting affects breast cancer aggressiveness through miRNA regulation [Affymetrix] Refer to individual Series
Project description:Numerous studies have described the altered expression and the causal role of miRNAs in human cancer. However, to date efforts to modulate miRNA levels for therapeutic purposes have been challenging to implement. Here, we find that Nucleolin (NCL), a major nucleolar protein, post-transcriptionally regulates the expression of a specific subset of miRNAs, including miR-21, miR-221, miR-222, and miR-103, causally involved in breast cancer initiation, progression and drug-resistance. We also show that NCL is commonly overexpressed in human breast tumors, and its expression correlates with that of NCL-dependent miRNAs. Finally, this study indicates that NCL-binding guanosine-rich aptamers affect the levels of NCL-dependent miRNAs and their target genes, reducing breast cancer cell aggressiveness, both in vitro and in vivo. These findings illuminate a path to novel therapeutic approaches based on NCL-targeting aptamers for the modulation of miRNA expression in the treatment of breast cancer. HeLa cells were transfected with the control or anti-nucleolin siRNA. After 72hours total RNA was collected and analyzed by NanoString.
Project description:Numerous studies have described the altered expression and the causal role of miRNAs in human cancer. However, to date efforts to modulate miRNA levels for therapeutic purposes have been challenging to implement. Here, we find that Nucleolin (NCL), a major nucleolar protein, post-transcriptionally regulates the expression of a specific subset of miRNAs, including miR-21, miR-221, miR-222, and miR-103, causally involved in breast cancer initiation, progression and drug-resistance. We also show that NCL is commonly overexpressed in human breast tumors, and its expression correlates with that of NCL-dependent miRNAs. Finally, this study indicates that NCL-binding guanosine-rich aptamers affect the levels of NCL-dependent miRNAs and their target genes, reducing breast cancer cell aggressiveness, both in vitro and in vivo. These findings illuminate a path to novel therapeutic approaches based on NCL-targeting aptamers for the modulation of miRNA expression in the treatment of breast cancer. MCF7 cells were treated with the control drug or AS1411 aptamer. After 72hours total RNA was collected and analyzed by Affymetrix U133 plus.
Project description:This SuperSeries is composed of the following subset Series: GSE39642: NanoString nCounter immune-related gene expression in blood sorted CD14+CD16- monocytes from sALS, fALS and HC subjects GSE39643: NanoString miRNA profiling of peripheral blood sorted CD14+CD16- monocytes from amyotrophic lateral sclerosis, multiple sclerosis and healthy control subjects Refer to individual Series
Project description:We investigated the innate immune system in the SOD1 ALS model. We found that splenic Ly6CHi monocytes were activated and their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We found a decrease in resident microglia in the spinal cord with disease progression. Two months prior to disease onset, splenic Ly6CHi monocytes had an M1 signature which included increased CCR2. At one month prior to disease onset, microglia expressed increased CCL2 and other chemotaxis-associated molecules. Microglia derived from the spinal cord of SOD1 mice recruited Ly6C+ monocytes to the CNS. Treatment with anti-Ly6C mAb modulated the Ly6CHi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss and extended survival. In humans with ALS, CD14+/CD16- monocytes (analogue of Ly6CHi monocytes) exhibited an ALS specific microRNA inflammatory signature similar to that observed in the SOD1 mouse providing a direct link between the animal model and the human disease. Thus, the SOD1-like profile of monocytes in ALS subjects may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach This study used the NanoString nCounter hybridization system and the Nanostring GX Human Immunology and Nanostring Human Inflammation assays to identify and quantitate immune-related genes in blood CD14+CD16- monocytes from ALS, MS and HC subjects Total RNA was isolated from FACS sorted CD14+CD16- blood-derived monocytes from sporadic sALS (n=10), fALS (n=4) and HC (n=10) subjects. RNA was profiled using the Nanostring GX Human Immunology and Nanostring Human Inflammation assays
Project description:We investigated the innate immune system in the SOD1 ALS model. We found that splenic Ly6CHi monocytes were activated and their progressive recruitment to the spinal cord, but not brain, correlated with neuronal loss. We found a decrease in resident microglia in the spinal cord with disease progression. Two months prior to disease onset, splenic Ly6CHi monocytes had an M1 signature which included increased CCR2. At one month prior to disease onset, microglia expressed increased CCL2 and other chemotaxis-associated molecules. Microglia derived from the spinal cord of SOD1 mice recruited Ly6C+ monocytes to the CNS. Treatment with anti-Ly6C mAb modulated the Ly6CHi monocyte cytokine profile, reduced monocyte recruitment to the spinal cord, diminished neuronal loss and extended survival. In humans with ALS, CD14+/CD16- monocytes (analogue of Ly6CHi monocytes) exhibited an ALS specific microRNA inflammatory signature similar to that observed in the SOD1 mouse providing a direct link between the animal model and the human disease. Thus, the SOD1-like profile of monocytes in ALS subjects may serve as a biomarker for disease stage or progression. Our results suggest that recruitment of inflammatory monocytes plays an important role in disease progression and that modulation of these cells is a potential therapeutic approach. This study used the NanoString nCounter hybridization system and nCounter miRNA expression assays to identify and quantitate miRNAs in blood CD14+CD16- monocytes from ALS, MS and HC subjects Total RNA was isolated from FACS sorted CD14+CD16- blood-derived monocytes from sporadic ALS (n=8), MS (n=8) and HC (n=8) subjects. RNA was profiled using the NanoString nCounter miRNA expression assay
Project description:Numerous studies have described the altered expression and the causal role of miRNAs in human cancer. However, to date efforts to modulate miRNA levels for therapeutic purposes have been challenging to implement. Here, we find that Nucleolin (NCL), a major nucleolar protein, post-transcriptionally regulates the expression of a specific subset of miRNAs, including miR-21, miR-221, miR-222, and miR-103, causally involved in breast cancer initiation, progression and drug-resistance. We also show that NCL is commonly overexpressed in human breast tumors, and its expression correlates with that of NCL-dependent miRNAs. Finally, this study indicates that NCL-binding guanosine-rich aptamers affect the levels of NCL-dependent miRNAs and their target genes, reducing breast cancer cell aggressiveness, both in vitro and in vivo. These findings illuminate a path to novel therapeutic approaches based on NCL-targeting aptamers for the modulation of miRNA expression in the treatment of breast cancer. Identification of NCL regulated miRNAs by using miRNA high-throughput sequencing of HeLa cells stably expressing double-strand (ds) interfering RNA against NCL or scrambled sequences (sh-NCL or sh-Scr).
Project description:Numerous studies have described the altered expression and the causal role of miRNAs in human cancer. However, to date efforts to modulate miRNA levels for therapeutic purposes have been challenging to implement. Here, we find that Nucleolin (NCL), a major nucleolar protein, post-transcriptionally regulates the expression of a specific subset of miRNAs, including miR-21, miR-221, miR-222, and miR-103, causally involved in breast cancer initiation, progression and drug-resistance. We also show that NCL is commonly overexpressed in human breast tumors, and its expression correlates with that of NCL-dependent miRNAs. Finally, this study indicates that NCL-binding guanosine-rich aptamers affect the levels of NCL-dependent miRNAs and their target genes, reducing breast cancer cell aggressiveness, both in vitro and in vivo. These findings illuminate a path to novel therapeutic approaches based on NCL-targeting aptamers for the modulation of miRNA expression in the treatment of breast cancer.
Project description:Numerous studies have described the altered expression and the causal role of miRNAs in human cancer. However, to date efforts to modulate miRNA levels for therapeutic purposes have been challenging to implement. Here, we find that Nucleolin (NCL), a major nucleolar protein, post-transcriptionally regulates the expression of a specific subset of miRNAs, including miR-21, miR-221, miR-222, and miR-103, causally involved in breast cancer initiation, progression and drug-resistance. We also show that NCL is commonly overexpressed in human breast tumors, and its expression correlates with that of NCL-dependent miRNAs. Finally, this study indicates that NCL-binding guanosine-rich aptamers affect the levels of NCL-dependent miRNAs and their target genes, reducing breast cancer cell aggressiveness, both in vitro and in vivo. These findings illuminate a path to novel therapeutic approaches based on NCL-targeting aptamers for the modulation of miRNA expression in the treatment of breast cancer.
Project description:Numerous studies have described the altered expression and the causal role of miRNAs in human cancer. However, to date efforts to modulate miRNA levels for therapeutic purposes have been challenging to implement. Here, we find that Nucleolin (NCL), a major nucleolar protein, post-transcriptionally regulates the expression of a specific subset of miRNAs, including miR-21, miR-221, miR-222, and miR-103, causally involved in breast cancer initiation, progression and drug-resistance. We also show that NCL is commonly overexpressed in human breast tumors, and its expression correlates with that of NCL-dependent miRNAs. Finally, this study indicates that NCL-binding guanosine-rich aptamers affect the levels of NCL-dependent miRNAs and their target genes, reducing breast cancer cell aggressiveness, both in vitro and in vivo. These findings illuminate a path to novel therapeutic approaches based on NCL-targeting aptamers for the modulation of miRNA expression in the treatment of breast cancer.