Gene expression data from T cells and NK cells with and without treatment with Hsp90 inhibitor (Geldanamycin)
Ontology highlight
ABSTRACT: Hsp90 is critical for regulation of the phenotype and functional activity of human T lymphocytes and natural killer (NK) cells. Analysis of human T cells (CD4, CD8) and NK cells treated with Hsp90 inhibitor.
Project description:aThese experiments address the effects of depleting Hsp90 upon the transcriptome of the major fungal pathogen, Candida albicans, during the heat shock response. The data show that key virulence factors are regulated in response to heat shock, and that Hsp90 exerts major effects on the heat shock transcriptome.a
Project description:Heat shock protein 90 (Hsp90) is an emerging therapeutic target in cancer. We report that Hsp90 inhibitors selectively kill DLBCLs that are biologically dependent on the BCL6 transcriptional repressor. We examined the pharmacokinetics, toxicity and efficacy of PUH71, a recently developed purine scaffold Hsp90 inhibitor. PUH71 preferentially accumulated in tumors vs. normal tissues, and unlike the widely used benzoquinone Hsp90 inhibitors, displayed no signs of organ toxicity. PUH71 selectively and potently induced the regression of BCL6-dependent DLBCLs in vivo, through reactivation of key BCL6 target genes and apoptosis. Experiment Overall Design: Six SCID mice were subcutaneously injected with human Farage DLBCL cells. When tumors reached 1 cm in diameter, four mice were administered PU-H71 (75mg/kg) by intra-peritoneal injection and two mice served as no-treatment controls. Animals were sacrificed by cervical dislocation under anesthesia at 6 and 12 h after the administration of PU-H71.
Project description:Identification of the mechanisms through which BET inhibitor (OTX-015) stimulates natural killer (NK) activation. RNA-seq was performed comparing vehicle- (DMSO) to OTX-015-treated NK-92 cell line.
Project description:This SuperSeries is composed of the following subset Series: GSE34255: Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by Elevated Temperature or Hsp90 Compromise [mRNA] GSE34938: Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by Elevated Temperature or Hsp90 Compromise [ChIP-chip] Refer to individual Series
Project description:The capacity to sense and transduce temperature signals pervades all aspects of biology, and temperature exerts powerful control over the development and virulence of diverse pathogens. In the leading fungal pathogen of humans, Candida albicans, temperature has a profound impact on morphogenesis, a key virulence trait. Many cues that induce the transition from yeast to filamentous growth are contingent on a minimum temperature of 37ºC, while further elevatation to 39ºC serves as an independent inducing cue. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis, as induction of filamentous growth requires relief from Hsp90-mediated repression of the morphogenetic program. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A (PKA) signaling, but is independent of the terminal transcription factor, Efg1. Here, we determine that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues, and does so in a manner that is independent of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or compromise of Hsp90 function. Hms1 functions downstream of the cyclin Pcl, and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility with virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens. Genome-wide occupancy experiments (Chip-CHIP) of FLAG-tagged Hms1p from cells grown in the presence or absence of geldanamycin (GldA). Co-precipitating genomic DNA was labelled and hybridized to whole-genome tiling arrays.
Project description:Natural killer (NK) cells are innate lymphocytes that play a major role in immunosurveillance against tumor initiation and metastasis spread. Signals and checkpoints that regulate NK cell fitness and function in the tumor microenvironment are not well defined. Transforming grow factor (TGF)- is a recognized suppressor of NK cells that inhibits IL-15 dependent signaling events and induces cellular transdifferentiation, however the role of other SMAD signaling pathways in NK cells is unknown. We used a global, label-free proteomics approach to compare the protein expression profiles of NK cells in the presence of TGF-b or activin-A.