Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers
Ontology highlight
ABSTRACT: Chromatin regulators have become highly attractive targets for cancer therapy, yet many of these regulators are expressed in a broad range of healthy cells and contribute generally to gene expression. An important conundrum has thus emerged: how can inhibition of a general regulator of gene expression produce selective effects at specific oncogenes? Here we investigate how inhibition of the transcriptional coactivator BRD4 (Bromodomain containing 4) leads to selective inhibition of disease-critical oncogenes in a highly malignant blood cancer, multiple myeloma (MM). We found that BRD4 generally occupies the promoter elements of active genes together with the Mediator coactivator, but remarkably high levels of these two coactivator proteins were associated with a small set of exceptionally large enhancers. These super-enhancers are associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impact genes with super-enhancers, including the c-MYC oncogene. Super-enhancers were found at key oncogenic drivers in many other tumor cells. Thus, super-enhancers can regulate oncogenic drivers in tumor cells, which in some cells can be preferentially disrupted by BRD4 inhibition, which in turn contributes to the selective transcriptional effects observed at these oncogenes. These observations have implications for the discovery of novel cancer therapeutics directed at components of super-enhancers in diverse tumor types. ChIP-Seq for chromatin regulators and RNA Polymerase II in multiple myeloma, glioblastoma multiforme, and small cell lung cancer
Project description:Chromatin regulators have become highly attractive targets for cancer therapy, yet many of these regulators are expressed in a broad range of healthy cells and contribute generally to gene expression. An important conundrum has thus emerged: how can inhibition of a general regulator of gene expression produce selective effects at specific oncogenes? Here we investigate how inhibition of the transcriptional coactivator BRD4 (Bromodomain containing 4) leads to selective inhibition of disease-critical oncogenes in a highly malignant blood cancer, multiple myeloma (MM). We found that BRD4 generally occupies the promoter elements of active genes together with the Mediator coactivator, but remarkably high levels of these two coactivator proteins were associated with a small set of exceptionally large enhancers. These super-enhancers are associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impact genes with super-enhancers, including the c-MYC oncogene. Super-enhancers were found at key oncogenic drivers in many other tumor cells. Thus, super-enhancers can regulate oncogenic drivers in tumor cells, which in some cells can be preferentially disrupted by BRD4 inhibition, which in turn contributes to the selective transcriptional effects observed at these oncogenes. These observations have implications for the discovery of novel cancer therapeutics directed at components of super-enhancers in diverse tumor types. Gene expression profiling in multiple myeloma cells after BET-Bromodomain inhibition with JQ1
Project description:Chromatin regulators have become highly attractive targets for cancer therapy, yet many of these regulators are expressed in a broad range of healthy cells and contribute generally to gene expression. An important conundrum has thus emerged: how can inhibition of a general regulator of gene expression produce selective effects at specific oncogenes? Here we investigate how inhibition of the transcriptional coactivator BRD4 (Bromodomain containing 4) leads to selective inhibition of disease-critical oncogenes in a highly malignant blood cancer, multiple myeloma (MM). We found that BRD4 generally occupies the promoter elements of active genes together with the Mediator coactivator, but remarkably high levels of these two coactivator proteins were associated with a small set of exceptionally large enhancers. These super-enhancers are associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impact genes with super-enhancers, including the c-MYC oncogene. Super-enhancers were found at key oncogenic drivers in many other tumor cells. Thus, super-enhancers can regulate oncogenic drivers in tumor cells, which in some cells can be preferentially disrupted by BRD4 inhibition, which in turn contributes to the selective transcriptional effects observed at these oncogenes. These observations have implications for the discovery of novel cancer therapeutics directed at components of super-enhancers in diverse tumor types.
Project description:Chromatin regulators have become highly attractive targets for cancer therapy, yet many of these regulators are expressed in a broad range of healthy cells and contribute generally to gene expression. An important conundrum has thus emerged: how can inhibition of a general regulator of gene expression produce selective effects at specific oncogenes? Here we investigate how inhibition of the transcriptional coactivator BRD4 (Bromodomain containing 4) leads to selective inhibition of disease-critical oncogenes in a highly malignant blood cancer, multiple myeloma (MM). We found that BRD4 generally occupies the promoter elements of active genes together with the Mediator coactivator, but remarkably high levels of these two coactivator proteins were associated with a small set of exceptionally large enhancers. These super-enhancers are associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impact genes with super-enhancers, including the c-MYC oncogene. Super-enhancers were found at key oncogenic drivers in many other tumor cells. Thus, super-enhancers can regulate oncogenic drivers in tumor cells, which in some cells can be preferentially disrupted by BRD4 inhibition, which in turn contributes to the selective transcriptional effects observed at these oncogenes. These observations have implications for the discovery of novel cancer therapeutics directed at components of super-enhancers in diverse tumor types.
Project description:Bromodomain-containing protein 4 (BRD4) functions as an epigenetic reader and binds to so-called super-enhancer regions of driving oncogenes such as MYC in cancer. We investigated the possibility to target super-enhancer regulated genes in neuroblastoma and in MYCN amplified disease in particular. We used OTX015, the first small-molecule BRD4 inhibitor to enter clinical phase I/II trials in adults, to test the feasibility to specifically target super-enhancer regulated gene-expression in neuroblastoma. BRD4 inhibition lead to significant transcriptional down-regulation of genes that were associated with super-enhancers, supporting the notion that BRD4 preferentially acts at these chromatin sites. BRD4 inhibition not only attenuated MYCN transcription but most significantly affected MYCN-regulated transcriptional programs.
Project description:Diffuse Large B-Cell Lymphoma (DLBCL) is a biologically heterogeneous and clinically aggressive disease. Here, we explore the role of BET bromodomain proteins in DLBCL, using integrative chemical genetics and functional epigenomics. We observe highly asymmetric loading of BRD4 at enhancers, with approximately 33% of all BRD4 localizing to enhancers at 1.6% of occupied genes. These super-enhancers prove particularly sensitive to bromodomain inhibition, explaining the selective effect of BET inhibitors on oncogenic and lineage-specific transcriptional circuits. Functional study of genes marked by super-enhancers identifies DLBCLs dependent on OCA-B and suggests a strategy for discovering unrecognized cancer dependencies. Translational studies performed on a comprehensive panel of DLBCLs establish a therapeutic rationale for evaluating BET inhibitors in this disease. ChIP-Seq for various transcription factors and histone modifications in diffuse large B-cell lymphoma cells
Project description:Proinflammatory stimuli rapidly and globally remodel chromatin landscape, thereby enabling transcriptional responses. Yet, the mechanisms coupling chromatin regulators to the master regulatory inflammatory transcription factor NF-kB remain poorly understood. We report in human endothelial cells (ECs) that activated NF-kB binds to enhancers, provoking a rapid, global redistribution of BRD4 preferentially at super-enhancers, large enhancer domains highly bound by chromatin regulators. Newly established NF-kB super-enhancers drive nearby canonical inflammatory response genes. In both ECs and macrophages BET bromodomain inhibition prevents super-enhancer formation downstream of NF-kB activation, abrogating proinflammatory transcription. In TNFa-activated endothelium this culminates in functional suppression of leukocyte rolling, adhesion and transmigration. Sustained BET bromodomain inhibitor treatment of LDLr -/- animals suppresses atherogenesis, a disease process rooted in pathological vascular inflammation involving endothelium and macrophages. These data establish BET-bromodomains as key effectors of inflammatory response through their role in the dynamic, global reorganization of super-enhancers during NF-kB activation. Gene expression analysis of human endothelial cells in resting state, treatment with TNFalpha or TNFalpha with the BET bromodomain inhibitor JQ1
Project description:Proinflammatory stimuli rapidly and globally remodel chromatin landscape, thereby enabling transcriptional responses. Yet, the mechanisms coupling chromatin regulators to the master regulatory inflammatory transcription factor NF-kB remain poorly understood. We report in human endothelial cells (ECs) that activated NF-kB binds to enhancers, provoking a rapid, global redistribution of BRD4 preferentially at super-enhancers, large enhancer domains highly bound by chromatin regulators. Newly established NF-kB super-enhancers drive nearby canonical inflammatory response genes. In both ECs and macrophages BET bromodomain inhibition prevents super-enhancer formation downstream of NF-kB activation, abrogating proinflammatory transcription. In TNFa-activated endothelium this culminates in functional suppression of leukocyte rolling, adhesion and transmigration. Sustained BET bromodomain inhibitor treatment of LDLr -/- animals suppresses atherogenesis, a disease process rooted in pathological vascular inflammation involving endothelium and macrophages. These data establish BET-bromodomains as key effectors of inflammatory response through their role in the dynamic, global reorganization of super-enhancers during NF-kB activation. ChIP-Seq for various transcription factors, RNA Polymerase II, and histone modifications in human endothelial cells
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. ChIP-seq in parental and JQ1 resistant triple negative breast cancer (TNBC) in response to DMSO or JQ1 treatment
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. Chem-Seq in parental and JQ1 resistant triple negative breast cancer (TNBC)
Project description:Triple negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. Here we report the preferential and high sensitivity of TNBCs to BET bromodomain inhibitors such as JQ1 manifested by cell cycle arrest in early G1, apoptosis, and induction of markers of luminal epithelial differentiation in vitro and in vivo. The sensitivity of TNBC and other tumor types to BET inhibition establishes a rationale for clinical investigation, and a motivation to understand mechanisms of resistance. After engendering acquired resistance to BET inhibition in previously sensitive TNBCs, we utilized integrative approaches to identify a unique mechanism of epigenomic resistance to this epigenetic therapy. Resistant cells remain dependent on BRD4, confirmed by RNA interference. However, TNBC cells adapt to BET bromodomain inhibition by re-recruitment of unmutated BRD4 to super-enhancers, now in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify hyper-phosphorylation of BRD4 and strong association with MED1. Together, these studies provide a rationale for BET inhibition in TNBC and argue for combination strategies to anticipate clinical drug resistance. RNA-Seq in parental and JQ1 resistant triple negative breast cancer (TNBC) in response to DMSO or JQ1 treatment over time