Subcutaneous adipose tissue gene expression in PCOS, compared with age and BMI-matched healthy controls
Ontology highlight
ABSTRACT: Subcutaneous adipose tissue gene expression profiles from women with PCOS, compared with age and BMI matched healthy controls (matched at group-level). A cross-section comparison was made between women with and without PCOS
Project description:Gene expresion profiles from the scAT following 6 week LC n-3 PUFA and 6 week placebo supplementation were compared Women with PCOS were supplemented with 4g n-3 PUFA (containing 1.8g EPA and DHA) daily for 6 weeks and changes in subcutaneous adipose tissue gene expression was compared with 6 week placebo supplementation. This was a cross-over placebo, controlled dietary intervention wherein women with PCOS received both treatments.
Project description:Subcutaneous adipose tissue gene expression profiles from women with PCOS, compared with age and BMI matched healthy controls (matched at group-level).
Project description:Why ~70% of women with polycystic ovary syndrome (PCOS) have intrinsic insulin resistance (IR), above and beyond that associated with body mass, including dysfunctional glucose metabolism in adipose tissue (AT), remains a fundamental question. In these experiments, we sought to explore the role of miRNAs in the AT of PCOS and matched controls. Analysis determined that PCOS AT has a differentially expressed miRNA profile, including upregulated miR-93. We observed a significant association between HOMA-IR, and GLUT4 and miR-93 expression in human AT. Our results point to a novel mechanism for regulating insulin-stimulated glucose uptake via miR-93, and demonstrate upregulated miR-93 expression in PCOS, possibly accounting for the IR of the syndrome, and also in non-PCOS women with IR. We performed miRNA microarrays to determine PCOS-related miRNA expression in adipose derived from lean PCOS patients and matched control women. We analyized miRNA from total RNA extracted from subcutaneous (sc) adipose tissue from three lean PCOS patients and three matched control women.
Project description:Why ~70% of women with polycystic ovary syndrome (PCOS) have intrinsic insulin resistance (IR), above and beyond that associated with body mass, including dysfunctional glucose metabolism in adipose tissue (AT), remains a fundamental question. In these experiments, we sought to explore the role of miRNAs in the AT of PCOS and matched controls. Analysis determined that PCOS AT has a differentially expressed miRNA profile, including upregulated miR-93. We observed a significant association between HOMA-IR, and GLUT4 and miR-93 expression in human AT. Our results point to a novel mechanism for regulating insulin-stimulated glucose uptake via miR-93, and demonstrate upregulated miR-93 expression in PCOS, possibly accounting for the IR of the syndrome, and also in non-PCOS women with IR. We performed miRNA microarrays to determine PCOS-related miRNA expression in adipose derived from lean PCOS patients and matched control women.
Project description:Polycystic ovary syndrome (PCOS) is the most common endocrinological disorder of fertile-aged women. PCOS has been associated with adverse pregnancy outcomes and abnormalities of the placenta. By taking a quantitative label-free quantitative proteomics approach we set out to investigate if changes in the plasma proteome of pregnant women with PCOS could elucidate the mechanisms behind the pathologies observed in PCOS pregnancies. We have performed label-free quantitative proteomics on plasma samples from pregnant women with PCOS at term (n=14) and plasma samples from pregnant control women (n = 23) matched for age, gestational length and BMI. The samples are derived from BASIC pregnancy cohort from Uppsala, Sweden. A total of 169 proteins with two or more unique peptides were identified.
Project description:Lean polycystic ovary syndrome (PCOS) women have a greater proportion of android (abdominal) fat, increased numbers of small subcutaneous (SC) abdominal adipocytes and preferential intra-abdominal fat accumulation. This study examines whether abnormal gene expression of SC abdominal adipose stem cells (ASCs) from lean PCOS women underlies this altered abdominal adipose structure-function. In this dataset, we include the expression data obtained from PCOS and NL subcutaneous adipose tissue. Differential expression of at least 1.5-fold change (P<0.05) were obtained in 120 genes (48 upregulated, 72 downregulated) of SC abdominal ASCs from PCOS versus NL women
Project description:Context: Endometrium in polycystic ovary syndrome (PCOS) presents altered gene expression indicating progesterone resistance and predisposing to reduced endometrial receptivity and endometrial cancer. Objective: We hypothesized that an altered endocrine/metabolic environment in PCOS may result in an endometrial M-bM-^@M-^\disease phenotypeM-bM-^@M-^] affecting the gene expression of different endometrial cell populations, including stem cells and their differentiated progeny. Design and setting: A prospective study conducted at an academic medical center. Patients and Main Outcome Measures: Proliferative phase endometrium was obtained from 6 overweight/obese PCOS (NIH criteria) and 6 overweight/obese controls. Microarray analysis was performed on fluorescence-activated cell sorting (FACS)-isolated endometrial epithelial cells (eEP), endothelial cells (eEN), stromal fibroblasts (eSF) and mesenchymal stem cells (eMSC). Gene expression data were validated using microfluidic Q-RT-PCR and immunohistochemistry (IHC). Results: The comparison between eEPPCOS and eEPCtrl showed dysregulation of inflammatory genes and genes with oncogenic potential (CCL2, IL-6, ORM1, TNAIFP6, SFRP4, SPARC). eSFPCOS and eSFCtrl showed upregulation of inflammatory genes (C4A/B, CCL2, ICAM1, TNFAIP3). Similarly, in eMSCPCOS vs. eMSCCtrl the most upregulated genes were related to inflammation and cancer (IL-8, ICAM1, SPRR3, LCN2). IHC scoring showed increased expression of CCL2 in eEPPCOS and eSFPCOS compared to eEPCtrl and eSFCtrl and IL-6 in eEPPCOS compared to eEPCtrl. Conclusions: Isolated endometrial cell populations in women with PCOS showed altered gene expression revealing inflammation and pro-oncogenic changes, independent of BMI, especially in eEPPCOS and eMSCPCOS, compared to controls. The study reveals an endometrial M-bM-^@M-^\disease phenotypeM-bM-^@M-^] in women with PCOS with potential negative effects on endometrial function and long-term health. Proliferative phase endometrium was obtained from 6 overweight/obese PCOS (NIH criteria) and 6 overweight/obese controls. Microarray analysis was performed on fluorescence-activated cell sorting (FACS)-isolated endometrial epithelial cells (eEP), endothelial cells (eEN), stromal fibroblasts (eSF) and mesenchymal stem cells (eMSC). Tissue samples were obtained through the National Institute of Health (NIH)/University of California, San Francisco (UCSF), Human Endometrial Tissue and DNA Bank in accordance with the guidelines of the Declaration of Helsinki. Informed consent was obtained from all participants in the UCSF Center for Reproductive Health, and the study was approved by the UCSF Committee on Human Research. The clinical summary of the study participants is shown in Table 1. Eleven proliferative phase endometrial biopsies (Pipelle, Cooper Surgical Shelton, Connecticut) and one curettage specimen were collected from over-weight (Body Mass Index [BMI, kg/m2] M-bM-^IM-% 27 < 29.9; n=1) and obese (BMI M-bM-^IM-% 30; n=5) women with PCOS (age 30.5M-BM-1 2.1 yrs, BMI 34.13M-BM-1 2.2, NIH criteria (17) and overweight (n=2) and obese (n=4) control women (age 36.50M-BM-11.70 yrs, BMI 35.73M-BM-13.96). All PCOS subjects had normal 17-hydroxyprogesterone, prolactin and thyroid hormone levels. Control samples were obtained from healthy volunteer and women undergoing benign gynecological surgery. All controls reported menstrual cycles with regular interval (25-35 days) and no clinical evidence of having PCOS. Neither PCOS nor control subjects were exposed to hormonal medications for at least 2 months prior to tissue sampling and were confirmed not pregnant.
Project description:To reveal microRNAs expression differences in cumulus cells between polycystic ovary syndrome (PCOS) and non-PCOS women. miRNAs expression profile of the cumulus cell samples with PCOS and non-PCOS were determined by Affymetrix miRNA 2.0. Six pooled RNAs from CC samples (three PCOS and three non-PCOS pooled RNAs) were separately analyzed on 6 GeneChip miRNA 2.0 Array (miRBase V15)
Project description:Insulin resistance is a common metabolic abnormality in women with PCOS and leads to an elevated risk of type 2 diabetes. Studies have shown that thiazolidinediones (TZD) improve metabolic disturbances in PCOS patients. We hypothesized that the effect of TZD in PCOS is in part mediated by changes in the transcriptional profile of muscle favoring insulin sensitivity. Using Affymetrix microarrays, we examined the effect of pioglitazone (30 mg/day for 16 weeks) on gene expression in skeletal muscle of 10 obese women with PCOS metabolically characterized by a euglycemic-hyperinsulinemic clamp. Moreover, we explored gene expression changes between these PCOS patients before treatment and 13 healthy control women. Treatment with pioglitazone improved insulin-stimulated total, oxidative and non-oxidative glucose metabolism, and reduced fasting serum insulin (all p < 0.05). Global pathway analysis using Gene Map Annotator and Pathway Profiler (GenMAPP 2.1) and Gene Set Enrichment Analysis (GSEA 2.0.1) revealed a significant upregulation of genes involved in mitochondrial oxidative phosphorylation (OXPHOS), ribosomal proteins, mRNA processing reactome, translation factors, and proteasome complexes in PCOS patients after pioglitazone therapy. Quantitative real-time PCR suggested that upregulation of OXPHOS genes was mediated by an increase in PGC-1M-NM-1 expression (p < 0.05). Expression of genes involved in ribosomal proteins and OXPHOS was down-regulated in PCOS patients before treatment compared to matched healthy women using GenMAPP 2.1 and GSEA 2.1. These data indicate that pioglitazone therapy restores insulin sensitivity in part by a coordinated upregulation of genes involved in mitochondrial oxidative metabolism and protein biosynthesis in skeletal muscle of PCOS. These transcriptional effects of pioglitazone therapy may contribute to prevent the onset of type 2 diabetes in these women. Experiment Overall Design: Ten obese women of reproductive age with PCOS participated in the study to test the effect of pioglitazone therapy (data set 1). To test if pioglitazone ameliorate existing defects in PCOS patients, the expression profile of the 10 PCOS patients before treatment were compared to the same cohort of 13 control subjects (data set 2).