Isolation of human skeletal muscle precursor cells by fluorescence-activated cell sorting.
Ontology highlight
ABSTRACT: Novel fluorescence-activated cell sorting (FACS) strategies to prospectively purify functionally distinct cell populations from the human myofiber-associated (hMFA) cell compartment, including human Skeletal Muscle Precursor cells (hSMPs): HSMPs, identified as CD45-Mac1-GlyA-CD31-CD34-CD56intITGA7hi hMFA cells, are highly enriched for cells expressing the satellite cell marker PAX7 and show efficient myogenic and lack adipogenic capacity. CD45-CD11b-GlyA-CD31-CD34+ hMFA cells (CD34+ cells) do not express PAX7, lack myogenic and exhibit adipogenic activity. We used Affymetrix Human Genome U133 Plus 2.0 microarrays to gain deeper insights into the molecular underpinnings functionally and phenotypically discrete human myofiber-associated cell subsets.
Project description:Novel fluorescence-activated cell sorting (FACS) strategies to prospectively purify functionally distinct cell populations from the human myofiber-associated (hMFA) cell compartment, including human Skeletal Muscle Precursor cells (hSMPs): HSMPs, identified as CD45-Mac1-GlyA-CD31-CD34-CD56intITGA7hi hMFA cells, are highly enriched for cells expressing the satellite cell marker PAX7 and show efficient myogenic and lack adipogenic capacity. CD45-CD11b-GlyA-CD31-CD34+ hMFA cells (CD34+ cells) do not express PAX7, lack myogenic and exhibit adipogenic activity.
Project description:To characterize CD142+ ASPCs (Aregs) after exposure to an adipogenic cocktail we performed bulk RNA-seq (using BRB-seq) of total, CD142− and CD142+ mouse adipose stem and progenitor cells (ASPCs), sorted using four different anti-CD142 antibodies. ASPCs were collected as Lin− (CD31− CD45− TER119−) CD29+ CD34+ SCA1+ cells of the mouse subcutaneous stromal vascular fraction using FACS.
Project description:Human adipose tissue contains two populations of progenitors (EPCs and ASCs) with cooperative roles in breast cancer. EPCs (CD45-CD34+CD31+CD13-CCRL2+) can generate endothelial cells. ASCs (CD45-CD34+CD31-CD13+CD140b+) are mesenchymal progenitors which generated pericytes.
Project description:Human adipose tissue contains two populations of progenitors (EPCs and ASCs) with cooperative roles in breast cancer. EPCs (CD45-CD34+CD31+CD13-CCRL2+) can generate endothelial cells. ASCs (CD45-CD34+CD31-CD13+CD140b+) are mesenchymal progenitors which generated pericytes. CD13+ cells and CD13- cells from 7 Lipotransfer aspirate
Project description:Skeletal muscle growth and regeneration rely on myogenic progenitor and satellite cells, the stem cells of postnatal muscle. Elimination of Notch signals during mouse development results in premature differentiation of myogenic progenitors and formation of very small muscle groups. Here we show that this drastic effect is rescued by mutation of the muscle differentiation factor MyoD. However, rescued myogenic progenitors do not assume a satellite cell position and contribute poorly to myofiber growth. The disrupted homing is due to a deficit in basal lamina assembly around emerging satellite cells and to their impaired adhesion to myofibers. On a molecular level, emerging satellite deregulate the expression of basal lamina components and adhesion molecules like integrin a7, collagen XVIIIa1, Megf10 and Mcam. We conclude that Notch signals control homing of satellite cells, stimulating them to contribute to their own microenvironment and to adhere to myofibers. Gene expression analysis using total RNA from FACS-isolated Vcam-1+/CD31-/CD45-/Sca1- embryonic muscle progenitor cells from E17.5 back muscle tissue of MyoD-/-, Pax3cre/+;Rbpjflox/flox;MyoD-/- and Pax3cre/+;DnMamlflox/flox;MyoD-/- mice.
Project description:Population control for the scRNA-seq based analysis a well-established fraction of mouse subcutaneous adipose-derived stromal vascular fraction (SVF) cells that is generally considered to harbour adipogenic stem and progenitor cells (ASPCs). We collected Lin- (CD31- CD45- TER119-) CD29+ CD34+ SCA1+ cells from the mouse subcutaneous SVF of transgenic mice, in which red fluorescent protein (RFP) is induced in Dlk1-expressing cells upon feeding with tamoxifen. While CD29, CD34, and SCA1 are generally expected to enrich for stem cells, DLK1 has previously been suggested to specifically mark pre-adipocytes.
Project description:Adipose tissue from 6 non-obese patients was collagenase treated and adipocytes separated from the stromal vascular fraction(SVF). SVF was then FACS sorted for the following fractions CD45-/CD34+/CD31+ (endothelial), CD45-/CD34+/CD31- (progenitor), CD45+/CD14+ (monocyte/macrophage), CD45+/CD14-(Leukocyte). RNA was isolated from adipocyte, SVF, progenitor, macrophage/monocyte and leukocyte fractions and analyzed on the Affymetrix Human Transcriptome 2.0 array. We also sorted SVF from an additional 13 (10 non-obese, 9 obese) patients and sent progenitor RNA for Affymetrix Human Transcriptome 2.0 array analysis.
Project description:Optimal cell-based therapies for the treatment of muscle degenerative disorders should not only regenerate fibers, but provide a quiescent satellite cell pool ensuring long-term maintenance and regeneration. Conditional expression of Pax3/Pax7 in differentiating pluripotent stem cells (PSC) allows the generation of myogenic progenitors endowed with satellite cell-like abilities. To identify the molecular determinants underlying their regenerative potential, we performed transcriptome analyses of these cells along with primary myogenic cells from several developmental stages. Here we show that in vitro generated PSC-derived myogenic progenitors possess a molecular signature similar to embryonic/fetal myoblasts. However, compared to fetal myoblasts, following transplantation they show superior myofiber engraftment and ability to seed the satellite cell niche, respond to multiple re-injuries and contribute to long-term regeneration. Upon engraftment, the transcriptome of Pax3/Pax7-induced PSC-derived myogenic progenitors changes dramatically, acquiring similarity to that of satellite cells, particularly in genes involved in extracellular matrix remodeling. Single cell profiling reveals that these changes are induced, not selected, by the in vivo environment. These findings demonstrate that Pax3/Pax7-induced PSC-derived myogenic progenitors possess proliferative and migratory abilities characteristic of earlier developmental stages, and an intrinsic ability to respond to environmental cues upon skeletal muscle regeneration.
Project description:Optimal cell-based therapies for the treatment of muscle degenerative disorders should not only regenerate fibers, but provide a quiescent satellite cell pool ensuring long-term maintenance and regeneration. Conditional expression of Pax3/Pax7 in differentiating pluripotent stem cells (PSC) allows the generation of myogenic progenitors endowed with satellite cell-like abilities. To identify the molecular determinants underlying their regenerative potential, we performed transcriptome analyses of these cells along with primary myogenic cells from several developmental stages. Here we show that in vitro generated PSC-derived myogenic progenitors possess a molecular signature similar to embryonic/fetal myoblasts. However, compared to fetal myoblasts, following transplantation they show superior myofiber engraftment and ability to seed the satellite cell niche, respond to multiple re-injuries and contribute to long-term regeneration. Upon engraftment, the transcriptome of Pax3/Pax7-induced PSC-derived myogenic progenitors changes dramatically, acquiring similarity to that of satellite cells, particularly in genes involved in extracellular matrix remodeling. Single cell profiling reveals that these changes are induced, not selected, by the in vivo environment. These findings demonstrate that Pax3/Pax7-induced PSC-derived myogenic progenitors possess proliferative and migratory abilities characteristic of earlier developmental stages, and an intrinsic ability to respond to environmental cues upon skeletal muscle regeneration.
Project description:Optimal cell-based therapies for the treatment of muscle degenerative disorders should not only regenerate fibers, but provide a quiescent satellite cell pool ensuring long-term maintenance and regeneration. Conditional expression of Pax3/Pax7 in differentiating pluripotent stem cells (PSC) allows the generation of myogenic progenitors endowed with satellite cell-like abilities. To identify the molecular determinants underlying their regenerative potential, we performed transcriptome analyses of these cells along with primary myogenic cells from several developmental stages. Here we show that in vitro generated PSC-derived myogenic progenitors possess a molecular signature similar to embryonic/fetal myoblasts. However, compared to fetal myoblasts, following transplantation they show superior myofiber engraftment and ability to seed the satellite cell niche, respond to multiple re-injuries and contribute to long-term regeneration. Upon engraftment, the transcriptome of Pax3/Pax7-induced PSC-derived myogenic progenitors changes dramatically, acquiring similarity to that of satellite cells, particularly in genes involved in extracellular matrix remodeling. Single cell profiling reveals that these changes are induced, not selected, by the in vivo environment. These findings demonstrate that Pax3/Pax7-induced PSC-derived myogenic progenitors possess proliferative and migratory abilities characteristic of earlier developmental stages, and an intrinsic ability to respond to environmental cues upon skeletal muscle regeneration.