Genome-wide maps of histone modifications in male and female mouse liver
Ontology highlight
ABSTRACT: Here we map six chromatin modifications -- H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K9me3, and H3K27me3 -- genome-wide in male and female mouse liver in order to identify histone modifications that characterize sex-biased genes and sex-biased DNase hypersensitive sites and their regulation by plasma growth hormone (GH) profiles, which are sexually dimorphic. We find distinct mechanisms of regulation in male liver and female liver: sex-dependent K27me3-mediated repression is an important mechanism of repression of female-biased, but not of male-biased, genes, and a sex-dependent K4me1 distribution, suggesting nucleosome repositioning by pioneer factors, is observed at male-biased, but not female-biased, regulatory sites. STAT5-mediated activation is most strongly associated with sex-biased chromatin modifications, while BCL6-mediated repression primarily occurs in association with sex-independent chromatin modifications, both at binding sites and at target genes. These samples are part of a study on chromatin states in male and female mouse and their role in sex-biased liver gene expression (A Sugathan and DJ Waxman (2013) Molec Cell Biol). Examination of six different histone modifications in male and female mouse liver.
Project description:Sex-dependent pituitary growth hormone (GH) secretory patterns determine the sex-biased expression of >1,000 genes in mouse and rat liver, affecting lipid and drug metabolism, inflammation and disease. A fundamental biological question is how robust differential expression can be achieved for hundreds of sex-biased genes simply based on the GH input signal pattern: pulsatile GH stimulation in males vs. near-continuous GH exposure in females. STAT5 is an essential transcriptional mediator of the sex-dependent effects of GH in the liver, but the mechanisms that underlie its sex-dependent actions are obscure. Here we elucidate the dynamic, sex-dependent binding of STAT5 and the GH/STAT5-regulated repressor BCL6 to mouse liver chromatin, revealing the counteractive interplay between these two regulators of liver sex-specificity. Our findings establish a close correlation between sex-dependent STAT5 binding and sex-biased target gene expression. Moreover, sex-dependent STAT5 binding correlated positively with sex-biased DNase hypersensitivity and H3-K4me1 and H3-K4me3 (activating) marks, correlated negatively with sex-biased H3-K27me3 (repressive) marks, and was associated with sex-differentially enriched motifs for HNF6/CDP factors. Importantly, BCL6 binding was preferentially associated with repression of female-biased STAT5 targets in male liver. Furthermore, BCL6 and STAT5 common targets but not BCL6 unique targets showed strong enrichment for lipid and drug metabolism. These findings provide a comprehensive, genome-wide view of the mechanisms whereby these two GH-regulated transcription factors establish and maintain sex differences affecting liver physiology and disease. The approaches used here to characterize sex-dependent STAT5 and BCL6 binding can be applied to other condition-specific regulatory factors and binding sites and their interplay with co-operative chromatin-binding factors. Mouse livers were excised from individual male and female mice killed at either a peak of STAT5 binding activity, or during the growth hormone (GH) interpulse interval, when STAT5 activity is either low (females) or essentially undetectable (males). Sonicated, cross-linked liver nuclear chromatin was then used to identify STAT5 binding sites by ChIP-Seq.
Project description:∼40,000 HNF6 binding sites were identified in mouse liver chromatin, including several thousand sites showing significant differences in level of HNF6 binding between male and female mouse liver. These sex-biased HNF6 binding sites showed strong enrichment for sex-biased DNase hypersensitive sites and for proximity to genes showing local sex-biased chromatin marks and a corresponding sex-biased expression. ~90% of genome-wide CUX2 binding sites identified previously in female mouse liver (Conforto TL, Zhang Y, Sherman J, Waxman DJ., Mol Cell Biol. 2012;32(22):4611-4627) were also bound by HNF6, giving evidence for genome-wide competition between HNF6 and CUX2 for chromatin binding in female mouse liver. These HNF6/CUX2 common binding sites were enriched for genomic regions more accessible in male than in female mouse liver chromatin, and showed strongest enrichment for male-biased genes, suggesting HNF6 displacement by CUX2 as a mechanism to explain the observed CUX2 repression of male-biased genes in female liver. However, HNF6 binding was sex-independent at a majority of its binding sites, and peak regions of HNF6 binding were frequently associated with co-binding by multiple other liver transcription factors, consistent with HNF6 playing a global regulatory role in both male and female liver. Livers were excised from individual male and female mice, cross-linked and sonicated, then used to identify HNF6 binding sites by ChIP-Seq using antibody specific to HNF6 (sc-13050; Santa Cruz Biotechnology, Inc).
Project description:Here we map six chromatin modifications -- H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K9me3, and H3K27me3 -- genome-wide in male and female mouse liver in order to identify histone modifications that characterize sex-biased genes and sex-biased DNase hypersensitive sites and their regulation by plasma growth hormone (GH) profiles, which are sexually dimorphic. We find distinct mechanisms of regulation in male liver and female liver: sex-dependent K27me3-mediated repression is an important mechanism of repression of female-biased, but not of male-biased, genes, and a sex-dependent K4me1 distribution, suggesting nucleosome repositioning by pioneer factors, is observed at male-biased, but not female-biased, regulatory sites. STAT5-mediated activation is most strongly associated with sex-biased chromatin modifications, while BCL6-mediated repression primarily occurs in association with sex-independent chromatin modifications, both at binding sites and at target genes. These samples are part of a study on chromatin states in male and female mouse and their role in sex-biased liver gene expression (A Sugathan and DJ Waxman (2013) Molec Cell Biol).
Project description:Gene expression in adult male and female mouse liver assayed by RNA-seq, as part of a study on chromatin states in male and female mouse and their role in sex-biased liver gene expression (A Sugathan and DJ Waxman (2013) Molec Cell Biol, in press). Total liver RNA was prepared from 12 individual male and 12 individual female mice. Four RNA pools, comprised of RNA isolated from 6 individual male or female livers (2 pooled biological replicates for each sex) were then prepared and used for RNA-seq.
Project description:Whole brain gene expression profiling for Julidochromis transcriptus male vs. female and Julidochromis marlieri male vs female to identify sex-role biased and sex biased gene expression in these species that exhibit conventional and reversed sex-biased behavior respectively.
Project description:Mammalian sex differences are determined by the X and Y chromosomes. Ancestral homologous genes on the sex chromosomes, termed X-Y gene pairs, have been predicted to drive sex differences. However, among the five X-Y gene pairs conserved across eutherians, which pairs drive sex-biased gene expression have remained undefined. Here, we investigate the roles of the X-Y gene pair Kdm5c-Kdm5d in regulating sex-biased gene expression independently of sex hormones using pluripotent mouse embryonic stem cells (ESCs) as a model. Wild-type (WT) XX female and WT XY male ESCs significantly differ in the expression of approximately 4% of all expressed genes, classified as female- or male-biased. Loss of Kdm5c in female ESCs results in the downregulation of female-biased genes. In contrast, loss of either Kdm5c or Kdm5d in male ESCs results in the upregulation of female-biased genes and downregulation of male-biased genes, effectively neutralizing sex-biased gene expression. In male ESCs, most sex-biased genes change in expression in a similar direction upon loss of Kdm5c or Kdm5d. However, Kdm5c loss dysregulates a greater number of sex-biased genes relative to Kdm5d loss in male ESCs. Remarkably, in female ESCs ectopic Kdm5d expression is sufficient to drive a sex-biased gene expression pattern similar to that of WT male ESCs. Taken together, these results establish Kdm5c-Kdm5d as a critical X-Y gene pair in driving sex-biased gene expression in pluripotent cells.
Project description:Signal Transducers and Activators of Transcription (STAT) 5A/B regulate cytokine-inducible genes upon binding to GAS motifs. It is not known what percentage of genes with GAS motifs bind to and are regulated by STAT5. Moreover, it is not clear whether genome-wide STAT5 binding is modulated by its concentration. To clarify these issues we established genome-wide STAT5 binding upon growth hormone (GH) stimulation of wild type mouse embryonic fibroblasts (MEFs) and MEFs overexpressing STAT5A more than 20-fold. Upon GH stimulation 23,827 and 111,939 STAT5A binding sites were detected in wild type and STAT5A overexpressing MEFs, respectively. 13,278 and 71,561 peaks contained at least one GAS motif. 1,586 and 8,613 binding sites were located within 2.5 kbp of promoter sequences, respectively. Stringent filtering revealed 78 genes in which the promoter/upstream region (-10kbp to +0.5kbp) was recognized by STAT5 both in wt and STAT5 overexpressing MEFs and 347 genes that bound STAT5 only in overexpressing cells. Genome-wide expression analyses identified that the majority of STAT5-bound genes was not under GH control. Up to 40% of STAT5-bound genes were not expressed. For the first time we demonstrate the magnitude of opportunistic genomic STAT5 binding that does not translate into transcriptional activation of neighboring genes. Genome-wide mapping of STAT5 binding in MEF cells (WT, KO; Stat5-/- and overexpression; STAT5A-Stat5-/-) upon growth hormone induction
Project description:Avian sex is determined by various factors, such as the dosage of DMRT1 and cell-autonomous mechanisms. While the sex-determination mechanism in gonads is well analyzed, the mechanism in germ cells remains unclear. In this study, we explored the gene expression profiles of male and female primordial germ cells (PGCs) during embryogenesis in chickens to predict the mechanism of sex-determination. Male and female PGCs were isolated from blood and gonads with a purity > 96% using flow cytometry and analyzed using RNA-seq. Prior to settlement in the gonads, female circulating PGCs (cPGCs) obtained from blood displayed sex-biased expression. Gonadal PGCs (gPGCs) also displayed sex-biased expression, and the number of female-biased genes detected was higher than male-biased genes. The female-biased genes in gPGCs were enriched in some metabolic processes. To reveal the mechanisms underlying the transcriptional regulation of female-biased genes in gPGCs, we performed stimulation tests. Stimulation with retinoic acid against cultured gPGCs derived from male embryos resulted in the upregulation of several female-biased genes. Overall, our results suggest that sex determination of avian PGCs possess aspects of both cell-autonomous and somatic cell regulation. Moreover, it appears that sex determination occurs earlier in females than in males.
Project description:∼40,000 HNF6 binding sites were identified in mouse liver chromatin, including several thousand sites showing significant differences in level of HNF6 binding between male and female mouse liver. These sex-biased HNF6 binding sites showed strong enrichment for sex-biased DNase hypersensitive sites and for proximity to genes showing local sex-biased chromatin marks and a corresponding sex-biased expression. ~90% of genome-wide CUX2 binding sites identified previously in female mouse liver (Conforto TL, Zhang Y, Sherman J, Waxman DJ., Mol Cell Biol. 2012;32(22):4611-4627) were also bound by HNF6, giving evidence for genome-wide competition between HNF6 and CUX2 for chromatin binding in female mouse liver. These HNF6/CUX2 common binding sites were enriched for genomic regions more accessible in male than in female mouse liver chromatin, and showed strongest enrichment for male-biased genes, suggesting HNF6 displacement by CUX2 as a mechanism to explain the observed CUX2 repression of male-biased genes in female liver. However, HNF6 binding was sex-independent at a majority of its binding sites, and peak regions of HNF6 binding were frequently associated with co-binding by multiple other liver transcription factors, consistent with HNF6 playing a global regulatory role in both male and female liver.
Project description:Whole brain gene expression profiling for Julidochromis transcriptus male vs. female and Julidochromis marlieri male vs female to identify sex-role biased and sex biased gene expression in these species that exhibit conventional and reversed sex-biased behavior respectively. 5 J. transcriptus male vs. female and 5 J. transcriptus female vs. male hybridizations compare 4 males and 4 females in a balanced loop design with dye-swaps that is independent of the 5 J. marlieri male vs. female and 5 J. marlieri female vs. male hybridizations compare 4 males and 4 females also in a balanced loop design with dye swaps.