Expression data from CD44-knockdown MDA-MB-231 human breast cancer cells.
Ontology highlight
ABSTRACT: CD44, an adhesion molecule that binds to extracellular matrix, primarily to hyaluronan (HA), has been implicated in cancer cell migration, invasion, and metastasis. CD44 has also recently been recognized as a marker for stem cells of several types of cancer. However, the roles of CD44 in the development of bone metastasis still remain unclear. To explore this issue, we established the MDA-MB-231 human breast cancer cells stably expressing short hairpin RNA against CD44. The CD44-knockdown MDA-MB-231 cells (MDA-MB-231 shCD44-2 and shCD44-3) were analyzed. As control, MDA-MB-231 cells stably expressing shRNA against firefly luciferase (shLuc) were used. Total of three samples. No replicates.
Project description:CD44, an adhesion molecule that binds to extracellular matrix, primarily to hyaluronan (HA), has been implicated in cancer cell migration, invasion, and metastasis. CD44 has also recently been recognized as a marker for stem cells of several types of cancer. However, the roles of CD44 in the development of bone metastasis still remain unclear. To explore this issue, we established the MDA-MB-231 human breast cancer cells stably expressing short hairpin RNA against CD44.
Project description:SIPA1 is a potential transcriptional modulator of tumor metastasis and recurrence. Here we showed that the breast cancer patients with higher SIPA1 expression have a higher relapse rate and worse prognosis, especially for triple-negative breast cancer (TNBC) patients. Moreover, SIPA1 expression was found positively correlated with relapse of breast cancer patients receiving adjuvant chemotherapy. In a TNBC cell line MDA-MB-231, we identified the possible tumorigenesis and metastasis processes regulated by SIPA1, and demonstrated that SIPA1 promoted cancer stem-like feature to form tumourspheres. Tumoursphere-formed MDA-MB-231 cells were shown to be resistant to epirubicin. Then we confirmed that SIPA1 could particularly activate the CD44 promoter and upregulate CD44 expression. Furthermore, SIPA1 could promote ABCB1 expression and strengthen chemoresistance of MDA-MB-231 cells to epirubicin. In conclusion, SIPA1 is a risk factor for highly-relapse in TNBC patients and a transcriptional regulator to maintain cancer stem-like features and promote chemoresistance in breast cancer cells.
Project description:Tartrate-resistant acid phosphatase (TRAP/ACP5) is a metalloenzyme of the group of acid phosphatases. High levels of TRAP protein have been associated with the development of cancer metastasis and with clinically relevant parameters of cancer progression and cancer aggressiveness. In order to investigate the molecular pathways responsible for the role of TRAP in such cancer related processes, we examined the changes in the proteome and phosphoproteome of MDA-MB-231 breast cancer cells determined by TRAP protein overexpression or knock-down. The dataset contains two different experimental setups. The first setup consists of the comparison between MDA-MB-231 breast cancer cells stably transfected with a full-length rat TRAP (TRAP3high) and MDA-MB-231 cells transfected with a mock insert (ctrl). The second setup consists of the comparison between TRAP3high cells transfected with a scrambled shRNA (scr) and TRAP3high cells transfected with either of two shRNAs targeting TRAP (sh2 and sh3+4). In the first experimental setup, we performed quantitative phosphoproteomic and proteomic analyses using SILAC. The two analyses identified respectively 3,290 unique phosphorylation sites corresponding to 1,059 genes, and 7,957 proteins corresponding to 7,846 genes. In the second experimental setup, we performed quantitative proteomics analysis using TMT, identifying 9,848 proteins corresponding to 9,189 genes. Integrated analysis of the generated data revealed a regulation of proteins involved in the cell adhesion process and extracellular matrix organization network. In particular, TGFβ isoform 2 (TGFβ2), TGFβ receptor type 1 (TβR1) and SMAD2 protein levels were increased upon TRAP upregulation, as well as phosphorylation of CD44 on residues localized in the intracellular portion of the protein. Finally, these results were validated by functional blocking and chemical inhibition of TGFβ2/TβR, which decreased TRAP-dependent cell migration and proliferation, and by blocking of CD44, which reduced TRAP3high cell proliferation. Altogether, we show that TRAP promotes metastasis-related cell properties in breast cancer cells via TGFβ2/TβR and CD44, thereby identifying a potential signaling mechanism associated to TRAP action in breast cancer cells.
Project description:To discover the potential drivers of TNBC metastasis, we established an in vivo model by injecting MDA-MB-231cells into the tail veins of mice. Then, the breast tumor cells that successfully grew into metastatic lung tumors were collected and expanded in vitro, followed by re-injected into the tail veins of mice for lung metastasis. After three rounds of selection, a highly metastatic subline, MDA-MB-231-P3, was established, and more frequent micro-metastasis was detected in MDA-MB-231-P3 groups than that of MDA-MB-231 groups when the lungs of mice were stained with hematoxylin and eosin (HE). The lncRNA profiles of MDA-MB-231 or MDA-MB-231-P3 cells were analyzed by lncRNA sequencing. A total of 267 lncRNAs in MDA-MB-231-P3 cells were upregulated more than 2-fold in comparison to the MDA-MB-231 cells.
Project description:Loss of MLL3 facilitates mesenchymal cells to acquire a mesenchymal/epithelial hybrid state during metastatic colonization. The MET occurring in distant metastases is likely driven by stromal signals in the metastatic niche. One signaling pathway that promotes the MET is the activation of protein kinase A (PKA). The MET hybrid cells can be identified as CD44+CD104+/high. Forskolin treatment generated significantly more CD44+CD104high hybrid cells in MLL3-mutant cells than the WT MDA-MB-231 cells. While both WT and MLL3-mutant CD44+CD104high hybrid EMT cells showed significantly increased lung metastatic ability than the counterpart CD44+CD104low mesenchymal cells, the MLL3-mutant hybrid cells showed a much greater metastasis-initiating ability than the WT hybrid cells. Here we reported the gene expression profiles of CD44+CD104high E/M hybird and CD44+CD104-/low mesenchymal cell populations sorted from Foskolin-treated, MLL3-null MDA-MB-231 cells.
Project description:Loss of MLL3 facilitates mesenchymal cells to acquire a mesenchymal/epithelial hybrid state during metastatic colonization. The MET occurring in distant metastases is likely driven by stromal signals in the metastatic niche. One signaling pathway that promotes the MET is the activation of protein kinase A (PKA). The MET hybrid cells can be identified as CD44+CD104+/high. Forskolin treatment generated significantly more CD44+CD104high hybrid cells in MLL3-mutant cells than the WT MDA-MB-231 cells. While both WT and MLL3-mutant CD44+CD104high hybrid EMT cells showed significantly increased lung metastatic ability than the counterpart CD44+CD104low mesenchymal cells, the MLL3-mutant hybrid cells showed a much greater metastasis-initiating ability than the WT hybrid cells. Here we reported the gene expression profiles of CD44+CD104high E/M hybird and CD44+CD104-/low mesenchymal cell populations sorted from Foskolin-treated, WT MDA-MB-231 cells.
Project description:To evaluate changes in gene expression in MDA-MB-231 cancer cells upon interaction with different extracellular matrices Gene expression in MDA-MB-231 cells was assayed after overnight incubation of the cells on gelatin or dense fibrillar collagen (HDFC) matrices at the presence or absence of serum in tissue culture medium. Five repeats were performed
Project description:Initial screening for potential metastases suppressors down regulated by methylation was performed using breast cancer cell line models specific for site-specific metastasation. Gene expression profiling and qRT-PCR validations were conducted on tumor tissues from primary breast cancer (BC) and BCBM. CADM1 and RECK were further characterized for their methylation patterns and finally the protein expression of CADM1 was validated in a large number of BC and BCBM samples and correlated with clinico-pathologic parameters. A subclone of MDA-MB-231, which has a high metastatic potential for the brain (MDA-MB-231 BR), was compared to the parental MDA-MB-231 WT and to a bone-seeking subclone (MDA-MB-231 SA) in order to find genes, which might be specifically involved in brain metastasis formation. The cell lines were treated with 5-Aza-2'-deoxycytidine in order to find genes potentially down regulated by methylation. The non-tumorigenic epithelial cell line MCF 10A was used to control for stress response after the treatment with 5-Aza-2'-deoxycytidine.
Project description:Analysis of breast cancer MDA-MB-231 cells stably over-expressing SUV420H2, a histone H4K20 methyltransferase. Several genes were significantly up- or down-regulated. Results provide insight into the molecular mechanism by which H4K20me3 contributes to gene expression. SUV420H2 stably over-expressing MDA-MB-231 cells were cloned. Then total RNA was extracted from the SUV420H2 over-expressing cells and the parental MDA-MB-231 cells.