Project description:Epigenetic alterations appear to modulate Myc signaling. We investigated the role of the histone demethylase JMJD2B in Myc-mediated neuroblastoma pathogenesis. We demonstrate that Myc physically interacts with and recruits this epigenetic modifier, which removes repressive H3K9 methyl marks from Myc-target genes. JMJD2B regulates neuroblastoma proliferation and, together with MYCN amplification, identifies a subgroup of poor prognosis patients. We identify a novel histone demethylase inhibitor, ciclopirox, which targets JMJD2B and, consequently, Myc signaling, thereby inhibiting neuroblastoma proliferation and inducing differentiation. In xenograft studies, genetic and pharmacologic inhibition of JMJD2B resulted in significant tumor growth restriction. Our findings provide insight into epigenetic regulation of Myc via histone methylation and proof-of-concept for pharmacologic inhibition of histone demethylases to target Myc signaling in cancer. 8 samples were transfected with two different siRNAs for control, JMJD2B, MYCN and JARID1A.
Project description:Epigenetic alterations appear to modulate Myc signaling. We investigated the role of the histone demethylase JMJD2B in Myc-mediated neuroblastoma pathogenesis. We demonstrate that Myc physically interacts with and recruits this epigenetic modifier, which removes repressive H3K9 methyl marks from Myc-target genes. JMJD2B regulates neuroblastoma proliferation and, together with MYCN amplification, identifies a subgroup of poor prognosis patients. We identify a novel histone demethylase inhibitor, ciclopirox, which targets JMJD2B and, consequently, Myc signaling, thereby inhibiting neuroblastoma proliferation and inducing differentiation. In xenograft studies, genetic and pharmacologic inhibition of JMJD2B resulted in significant tumor growth restriction. Our findings provide insight into epigenetic regulation of Myc via histone methylation and proof-of-concept for pharmacologic inhibition of histone demethylases to target Myc signaling in cancer. 8 samples were treated with vehicle or ciclopirox.
Project description:p53 inactivation occurs only rarely in neuroblastoma, although miR-34, a transcriptional target of p53, is often deleted in neuroblastoma, suggesting another way in which p53 signaling might be impaired. In this study we show that miR-34 directly targets and downregulates the Polycomb Repressive Complex 2 (PRC2) and its associated histone demethylase, JARID1A, in a p53-dependent manner, 8 samples were transfected with siRNA control or JMJD2B, MYCN, JARID1A into NB1691 cells.
Project description:p53 inactivation occurs only rarely in neuroblastoma, although miR-34, a transcriptional target of p53, is often deleted in neuroblastoma, suggesting another way in which p53 signaling might be impaired. In this study we show that miR-34 directly targets and downregulates the Polycomb Repressive Complex 2 (PRC2) and its associated histone demethylase, JARID1A, in a p53-dependent manner, 4 samples were transfected with miRNA control or miR-34a, miR-34b, miR-34c into SK-N-BE2 cells.
Project description:A novel heterozygous germline variant, c.547G>A (p.Gly183Ser), in the paired box protein encoding gene, PAX5, was found to segregate with disease in two unrelated kindreds with autosomal dominant pre-B cell acute lymphoblastic leukemia (ALL). Leukemic cells from both families exhibited 9p deletion, with loss-of-heterozygosity and retention of the mutant PAX5 allele at 9p13. Two additional sporadic ALL cases with 9p loss demonstrated PAX5 Gly183 substitution in the leukemic cells. Functional and gene expression analysis of the PAX5 germline variants demonstrated reduced transcriptional activity. These data extend the role of PAX5 alterations in the pathogenesis of pre-B ALL, and implicate PAX5 in a novel syndrome of germline susceptibility to pre-B cell neoplasia. We analyzed 40 samples comprising sevenfold replicates of transductions with empty vector, wild type PAX5 and 4 mutant PAX5 constructs
Project description:Somatic NOTCH1 mutations are found in ~60% of T lineage acute lymphoblastic leukemias (T-ALLs). Notch1 is cleaved by γ secretase to generate activated Notch intracellular domain (NICD) proteins. The NOTCH1 mutations found in T-ALL constitutively activate Notch1 signaling by increasing NICD levels. Genetic alterations in components of the Ras/PI3 kinase (PI3K)/Akt pathway are also highly prevalent in T-ALL, and often coexist with NOTCH1 mutations. Exposing a T-ALL cell line to the PI3 kinase (PI3K) inhibitor GDC-0941 generated drug resistant clones that down-regulated NICD expression. To address the in vivo relevance of this unexpected observation, we transplanted primary wild-type (WT) and KrasG12D mutant T-ALLs into recipient mice, and treated them with GDC-0941 alone and in combination with the MEK inhibitor PD0325901 (PD901). Although many leukemias responded dramatically to these targeted agents in vivo, drug-resistant clones invariably emerged. Multiple resistant T-ALLs lost NICD expression through mechanisms that included loss of Notch1 mutations found in the parental T-ALL. These GDC-0941-resistant leukemias exhibited reduced expression of many Notch1 target genes, elevated levels of phosphorylated Akt (pAkt), and displayed cross-resistance to γ secretase inhibitors (GSIs). Consistent with these data, inhibiting Notch1 activity in T-ALL cells enhanced PI3K signaling, providing a likely mechanism for in vivo selection against clones with Notch1 pathway activation. Thus, oncogenic Notch1 mutations that promote clonal outgrowth during malignant transformation unexpectedly “switch” to become deleterious during treatment with a PI3K inhibitor. These data advance our understanding of T-ALL pathogenesis and have implications for implementing new therapeutic regimens. We analyzed 28 mouse T-ALL samples obtained after in vivo treatment with GDC-0941 alone or GDC-0941 + PD0325901. These T-ALL samples are either Kras wild type or harbor a KrasG12D mutations.
Project description:The outcome for children with high-grade gliomas (HGG) remains dismal, with a two-year survival rate of only 10-30%. Approximately half of pediatric HGGs are diffuse intrinsic pontine glioma (DIPG), a brainstem tumor that arises almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet derived growth factor receptor alpha (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs. To determine whether the PDGFRA is also targeted by more subtle mutations not detected by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic activating mutations were identified in 14.4% (13/90) of non-brainstem pediatric HGGs and 4.7% (2/43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. 40% of tumors with mutation showed concurrent amplification, while 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro, and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 non-brainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFR in childhood HGG. To better understand the consequence of PDGFRα mutation in pediatric gliomagenesis, retroviral constructs expressing wild-type PDGFRα or six selected PDGFRα mutants that affect different regions of the receptor were generated for functional studies. p53-null primary mouse astrocyte (PMA) cultures were chosen as a relevant cellular background to assess PDGFRα function.
Project description:Intrahepatic cholestasis of pregnancy (ICP) is estimated to impact between 0.4% and 5% of pregnancies worldwide. This disease is associated with elevated maternal bile acids and frequently untoward neonatal outcomes such as respiratory distress and asphyxia. Multiple candidate genes have been implicated, but none have provided insight into the mechanisms of neonatal respiratory distress and death. Herein our studies demonstrate that maternal cholestasis (due to Abcb11 deficiency) produces 100% neonatal death within 24h due to atelectasis producing pulmonary hypoxia, which recapitulates the respiratory distress and asphyxia of human ICP. We show that these neonates have elevated pulmonary bile acids that are associated with disrupted structure of pulmonary surfactant. Maternal absence of Nr1i2 superimposed upon Abcb11 deficiency strongly increased neonatal survival and is directly related to reduced maternal bile acid concentrations. The mechanism accounting for reduced serum bile acids in the mothers deficient in both Nr1i2 and Abcb11 appears related to disrupted reabsorption of intestinal bile acids due to changes in transporter expression. These findings provide novel insights into pulmonary failure by revealing bile acids capability to disrupt the structure of surfactant producing collapsed alveoli, pulmonary failure and ultimately death. These findings have important implications for neonatal health especially when maternal bile acids are elevated during pregnancy and highlight a potential pathway and targets amenable to therapeutic intervention to ameliorate this condition. We used microarrays to measure changes in gene expression profiles in lung tissues from Abcb11+/- lungs after interbreeding C57BL/6 wild-type female or C57BL/6 Abcb11-/- female mice against either C57BL/6 wild-type male mice or C57BL/6 Abcb11-/- male mice to create only heterozygote offspring. We also measured profiles in liver tissues from age-matched C57BL/6 wild-type and C57BL/6 Abcb11-/- mice. Lung tissues were collected from day E17.5, E18.5 and neonatal (N0) mice. Liver tissues were collected from 1.5-month-old C57BL/6 wildtype and Abcb11-/- mice.
Project description:As a part of the St Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome Project (PCGP), we adapted deep sequencing technologies and have sequenced 1025 tumor samples from 21 diseases covering brain, solid tumors and leukemias. We analyzed the genomic DNA sequences, copy number variations and structural rearrangements of 633 genes whose proteins are involved in epigenetic machineries, including those that covalently modify DNA and histones, and structurally reorder chromatin. To examine gene expression level of mutated histone genes, we analyzed gene expression in a group of 40 non-ETP T-lineage ALL samples using Affymetrix GeneChip HT HG-U133+ PM arrays (including 37 samples deposited in GSE28703 and 3 additional arrays not studied previously). The results provide us the knowledge of potential therapeutic targets for pediatric cancer treatment and improvement of personalized therapy. Gene expression profiling was performed on 40 non ETP T-lineage acute lymphoblastic leukemia samples. No control or reference samples were included.
Project description:The post-transcriptional control of mRNA stability plays a critical role in numerous biological functions, including the immune response, cell cycle regulation and DNA damage response. HNRNPA0, which encodes an RNA-binding protein shown to regulate transcript stability via binding to the AU-rich elements (AREs) of mRNAs, is located within the commonly deleted segment of 5q31.2 in therapy-related myeloid neoplasms (t-MNs) with a del(5q). We hypothesized that loss of HNRNPA0 leads to alterations in hematopoietic differentiation due to changes in the expression of its target AU-rich transcripts. Using RNAi interference to model Hnrnpa0 loss in primary murine cells and an experimental cell system, we found that reduced Hnrnpa0 expression leads to a shift from monocytic towards granulocytic differentiation. Microarray-based global expression profiling revealed that Hnrnpa0 knockdown disproportionally impacts ARE-containing transcripts and alters expression of myeloid specification genes. The biological importance of ARE-containing genes in myeloid neoplasms is further supported by changes in gene expression of ARE-mRNAs in t-MN del(5q) patients, predicted by pathway analysis to activate tumor growth. Together, our findings suggest that alterations in ARE-containing genes can positively regulate the cellular proliferation of del(5q) cells and implicate haploinsufficiency of HNRNPA0 as one of the key initiation mutations in the pathogenesis of t-MN. Gene expression profiling was performed on 38 single t-MN tumor samples. No control or reference samples were included.