Mouse Hepa1c1c7 cells: TCDD vs. TCDD plus blebbistatin
Ontology highlight
ABSTRACT: Transcriptional profiling of mouse Hepa1c1c7 cells comparing control TCDD-treated cells with Hepa1c1c7 cells treated with TCDD plus blebbistatin. The latter causes dysfunction of MYH9. Goal was to determine the effects of blebbistatin on global Hepa1c1c7 gene expression. Two-condition experiment, TCDD treated Hepa1c1c7 vs. TCDD plus blebbistatin. Biological replicates: 1 TCDD sample, 1 TCDD plus blebbistatin sample.
Project description:Transcriptional profiling of mouse Hepa1c1c7 cells comparing control TCDD-treated cells with Hepa1c1c7 cells treated with TCDD plus blebbistatin. The latter causes dysfunction of MYH9. Goal was to determine the effects of blebbistatin on global Hepa1c1c7 gene expression.
Project description:Pregnant C57Bl6N mice were treated with 0 (corn oil), 1.5, 3.0, or 6.0 ug/kg TCDD on gd14.5. Fetal hearts were collected on gd17.5. Hearts from each litter were pooled onto one chip. 4 replicates of each condition were run on affymetrix MG_U74Av2 chips, using standard affymetrix protocols and controls. Keywords: dose-response, 3 doses plus corn oil control, 4 replicates
Project description:Transcriptional profiling of the digestive gland tissue of female mussel Mytilus galloprovincialis exposed to TCDD, n-TiO2 and their binary mixture Background: Exposure of marine organisms to pollutant mixtures may affect the pattern of contaminant uptake/bioaccumulation, as well as of gene expression in the tissues. Despite the growing concern over the potential biological impact of nanoparticles (NPs) in the aquatic environment, little is known about their interactions with other pollutants.We have recently shown that in the marine mussel Mytilus galloprovincialis exposure to n-TiO2, one of the most widespread type of NPs in use, in combination with 2,3,7,8-TCDD, chosen as model organic xenobiotic, can exert antagonistic or synergistic effects on different biomarkers from the molecular to the tissue level, depending on cell/tissue and type of measured response. An integrated approach involving immunhistochemical and transcriptomic analysis was employed to clarify the itteractive effects of n-TiO2 and TCDD in mussels digestive gland. In particular,TCDD bioaccumulation was evaluated utilizing specific anti-TCDD fluorescent antibodies. Moreover, immunohistochemical evaluation of antioxidant and cytoskeletal components was performed. To provide clues about how the molecular response to the investigated compounds is modulated, we used a cDNA microarray with1673 sequences. In animals exposed only to TiO2, functional genomics analysis of the microarray data (48 differentially expressed genes (DEGs)) highlighted three biological processes, largely dominated by the up-regulation of microtubule-based movement-related genes. Exposure to 2,3,7,8-TCDD yielded 49 DEGs exhibiting distinct patterns in terms of biological processes. Finally, exposure to the mixture rendered 62 GEGs characterized by the regulation of response to chemical stimulus, microtubule-based movement and intracellular signal transduction. Our data should be carefully considered in view of the biological effects of emerging pollutants, particularly in case of mixture chemicals. Transcriptional profiling of the digestive gland tissue of female mussel Mytilus galloprovincialis exposed to TCDD, n-TiO2 and their binary mixture
Project description:Juvenile zebrafish were fed Biodiet starter (4% body weight per day) for 42 d with TCDD added at 0 ppb, 0.1 ppb, 1 ppb, 10 ppb or 100 ppb. Fish were collected, sexed, weighed and length measured at 0, 7, 14, 28 or 42 d for TCDD assessment, histopathologic and microarray analysis. Microarray experiments were conducted using 0 and 100 ppb-TCDD treated male and female sexed zebrafish at 7, 14, 28 and 42 d. NimbleGen Gene Expression 12X135K zebrafish microarrays and One-Color DNA labeling Kit (NimbleGen, WI) were used for genome-wide expression analysis of TCDD-treated zebrafish. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb) and male (18.04 ppb) fish at 28 d post exposure. TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. At 42d, no mature female fish were observed.
Project description:In many mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as lethal weight loss as a result of severe and persistent hypophagia. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR) – a transcription factor. Because TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, we hypothesized that wasting syndrome is due to TCDD-induced dysregulation of genes involved in regulation of food-intake. We therefore focused on the hypothalamus, as it is the regulatory center of food-intake and energy balance in the central nervous system. We profiled mRNA abundance in hypothalamic tissue from two rat strains with widely differing sensitivities to wasting syndrome: TCDD-sensitive Long-Evans rats and TCDD-resistant Han/Wistar rats, 23 hours after exposure to TCDD (100 μg/kg) or corn oil vehicle. We found that TCDD exposure caused minimal transcriptional dysregulation effects in the hypothalamus, with only 6 genes changed in Long-Evans rats and 15 genes in Han/Wistar rats. Two of the most dysregulated genes were Cyp1a1 and Nqo1, which are induced by TCDD across a wide range of tissues and are considered sensitive markers of TCDD exposure. The minimal response of the hypothalamic transcriptome to a lethal dose of TCDD at an early time-point suggests that the hypothalamus is not the predominant site of initial events leading to hypophagia and associated wasting. TCDD may affect feeding behaviour via events upstream or downstream of the hypothalamus, and further work is required to evaluate this at the level of individual hypothalamic nuclei and subregions. Two strains, each with drug-treated vs vehicle-control
Project description:Juvenile zebrafish were fed Biodiet starter (4% body weight per day) for 42 d with TCDD added at 0 ppb, 0.1 ppb, 1 ppb, 10 ppb or 100 ppb. Fish were collected, sexed, weighed and length measured at 0, 7, 14, 28 or 42 d for TCDD assessment, histopathologic and microarray analysis. Microarray experiments were conducted in TCDD-treated (at 0, 0.1, 1, 10 and 100 ppb) for male and female sexed zebrafish at 28 d. NimbleGen Gene Expression 12X135K zebrafish microarrays and One-Color DNA labeling Kit (NimbleGen, WI) were used for genome-wide expression analysis of TCDD-treated zebrafish. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb) and male (18.04 ppb) fish at 28 d post exposure. TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Microarray gene expression analysis comparing control to post TCDD diet revealed dysregulated genes located in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential biomarkers, mechanisms and pathology of TCDD induced dysregulation.
Project description:Rodents exposed to the environmental contaminant, TCDD, suffer from a number of acute and chronic toxicities, including lethality and a wasting syndrome. Hypothesizing that the wasting syndrome may be caused by changes in neural control of energy flux and metabolism, we profiled the transcriptional response of rat hypothalamus to TCDD. We employed two separate rat strains: the Long-Evans strain is sensitive to TCDD toxicities while the Han/Wistar strain is over four orders of magnitude more resistant. Surprisingly, few transcriptional changes were induced by TCDD in either strain. Only four genes were altered in Long-Evans rats, including three classic TCDD-responsive genes: Cyp1a1, Cyp1b1, and Nqo1. These three genes were also altered in Han/Wistar rats, along with 133 additional genes. However, the magnitudes of alteration of these additional genes was very modest, with most changes well below two-fold in magnitude. We therefore concluded that rat hypothalamus is mostly refractory to TCDD exposure, at least at the doses and time-points surveyed here. Two strains, each with drug-treated vs. vehicle-control
Project description:Rodents exposed to the environmental contaminant, TCDD, suffer from a number of acute and chronic toxicities, including lethality and a wasting syndrome. Hypothesizing that the wasting syndrome may be caused by changes in adipose tissue -- either in its hormonal regulation or in homeostatic effects -- we profiled the transcriptional response of rat white adipose to TCDD. We employed two separate rat strains: the Long-Evans strain is sensitive to TCDD toxicities while the Han/Wistar strain is over four orders of magnitude more resistant. One day after TCDD exposure few genes were altered in either strain, but after four days a modest number of transcriptional alterations were observed. Strikingly, TCDD had far fewer effects than did a feed-restriction protocol intended to mimic the wasting syndrome itself. Notably several classic TCDD-responsive genes were modulated at all time-points, including Cyp1a1, Cyp1b1, and Nqo1. We therefore concluded that rat adipose tissue is unlikely to be the primary driver of the wasting syndrome, and that another tissue is likely involved. Two strains, each with drug-treated vs. vehicle-control
Project description:Transcriptional profiling of hMADS cells treated or not by TCDD, PCB126 and PCB153. Four-condition experiment: 4 control replicates, 4 TCDD-treated, 4 PCB126-treated, 4 PCB153-treated either undiffrentitaed or differentiated cells.
Project description:StUbEx PLUS – a modified Stable tagged Ubiquitin Exchange system for Peptide Level purification and in-depth mapping of Ubiquitination Sites. Applying StUbEx PLUS to U2OS cells treated with proteasomal inhibitors MG132 or Bortezomib resulted in the identification of 41,582 sites mapping on 7,762 proteins. In addition, 72 proteins were identified with N-terminal protein ubiquitination.