Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max) Embryos


ABSTRACT: Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants. SUBMITTER_CITATION: Biology 2013, 2(4), 1311-1337; doi:10.3390/biology2041311 Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos Delasa Aghamirzaie, Mahdi Nabiyouni, Yihui Fang, Curtis Klumas, Lenwood S. Heath, Ruth Grene and Eva Collakova SUBMITTER_CITATION: Metabolites 2013, 3(2), 347-372; doi:10.3390/metabo3020347 Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max) Embryos Eva Collakova, Delasa Aghamirzaie, Yihui Fang, Curtis Klumas, Farzaneh Tabataba, Akshay Kakumanu, Elijah Myers, Lenwood S. Heath and Ruth Grene Total mRNA profiles of 10 time course samples of Soybean developing embryos with three replicates per sample were generated by deep sequencing, using Illumina HiSeq 2000

ORGANISM(S): Glycine max

SUBMITTER: Delasa Aghamirzaie 

PROVIDER: E-GEOD-46153 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos.

Aghamirzaie Delasa D   Nabiyouni Mahdi M   Fang Yihui Y   Klumas Curtis C   Heath Lenwood S LS   Grene Ruth R   Collakova Eva E  

Biology 20131121 4


Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean e  ...[more]

Publication: 1/2

Similar Datasets

2013-12-13 | GSE46153 | GEO
2019-05-14 | E-GEOD-46153 | ExpressionAtlas
| PRJNA197379 | ENA
2010-06-21 | GSE18827 | GEO
2017-07-12 | GSE99571 | GEO
2015-08-11 | GSE69821 | GEO
2015-08-11 | E-GEOD-69821 | biostudies-arrayexpress
2010-07-08 | E-GEOD-18827 | biostudies-arrayexpress
2021-12-30 | GSE116796 | GEO
2019-03-18 | GSE121983 | GEO