ABSTRACT: Through RNA-seq analyses of nascent transcripts, we found large numbers of RNA transcripts that extend beyond the 3’ ends of protein-coding genes; we refer to these extended transcripts as geRNAs. These findings demonstrate that transcription of most human protein-coding genes does not terminate within close proximity to poly(A) signals; rather, it terminates at sites far beyond these signals (up to 50 kb). Examination of different RNA species in HelaS3 cells by strand-specific RNA-seq. The 4sU-labeled RNA was isolated by using organomercurial affinity matrix.
Project description:Background: Microorganisms are the major cause of food spoilage during storage, processing and distribution. Pseudomonas fluorescens is a typical spoilage bacterium that contributes to a large extent to the spoilage process of proteinaceous food. RpoS is considered an important global regulator involved in stress survival and virulence in many pathogens. Our previous work revealed that RpoS contributed to the spoilage activities of P. fluorescens by regulating resistance to different stress conditions, extracellular acylated homoserine lactone (AHL) levels, extracellular protease and total volatile basic nitrogen (TVB-N) production. However, RpoS-dependent genes in P. fluorescens remained undefined. Results: RNA-seq transcriptomics analysis combined with quantitative proteomics analysis basing on multiplexed isobaric tandem mass tag (TMT) labeling was performed for the P. fluorescens wild-type strain UK4 and its derivative carrying a rpoS mutation. A total of 375 differentially expressed genes (DEGs) and 212 differentially expressed proteins (DEPs) were identified in these two backgrounds. The DGEs were further verified by qRT-PCR tests, and the genes directly regulated by RpoS were confirmed by 5’-RACE-PCR sequencing. The combining transcriptome and proteome analysis revealed a role of this regulator in several cellular processes, including polysaccharide metabolism, intracellular secretion and extracellular structures, cell well biogenesis, stress responses, ammonia and biogenic amine production, which may contribute to biofilm formation, stress resistance and spoilage activities of P. fluorescens. Moreover, in this work we indeed observed that RpoS contributed to the production of the macrocolony biofilm’s matrix.
Project description:In a previous study, we found that H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and by regulating H2S metabolism and the oxidative stress response. However, little is known about the molecular mechanisms behind H2S-regulated salt-stress tolerance in cucumber. Here, an integrated transcriptomic and proteomic analysis based on RNA-seq and 2-DE was used to investigate the global mechanism underlying H2S-regulated salt-stress tolerance. In total, 11 761 differentially expressed genes (DEGs) and 61 differentially expressed proteins (DEPs) were identified. Analysis of the pathways associated with the DEGs showed that salt stress enriched expression of genes in primary and energy metabolism, such as photosynthesis, carbon metabolism and biosynthesis of amino acids. Application of H2S significantly decreased these DEGs but enriched DEGs related to plant-pathogen interaction, sulfur-containing metabolism, cell defense and signal transduction pathways. Notably, changes related to sulfur-containing metabolism and cell defense were also observed through proteome analysis, such as Cysteine synthase 1, Glutathione S-transferase U25-like, Protein disulfide-isomerase and Peroxidase 2. We present the first global analysis of the mechanism underlying H2S regulation of salt-stress tolerance in cucumber through tracking changes in the expression of specific proteins and genes.
Project description:Derailed gene expression programs within the developing nervous system, encompassing both transcriptional and posttranscriptional processes, can cause diverse neurodevelopmental diseases (NDD). The NDD FOXG1-syndrome lacks full understanding of the mechanistic role of its eponymous gene product. While it is known that FOXG1 acts in part at the chromatin by binding to regulative regions, it is unclear what factors control its presence at specific sites. Long non-coding RNAs (lncRNAs) can mediate site-directed transcription factor binding, but their potential role in FOXG1-syndrome has not been described. Here, we show that FOXG1 localisation is regulated at selected loci through the lncRNA Pantr1. We identified FOXG1 as an upstream transcriptional activator of Pantr1 in human and mice. Further, we discovered that FOXG1 has the ability to associate with RNAs. Both, transcriptional regulation of Pantr1 by FOXG1 and association of both partners, build up a regulative network that impacts the localisation of FOXG1 at selected genomic loci. Specifically, Pantr1 facilitates cooperative presence of FOXG1/NEUROD1 at specific sites, and Pantr1 reduction leads to redistribution of FOXG1 to comparably more generic binding sites. The rescue of impaired dendritic outgrowth upon FOXG1 reduction by simultaneous overexpression of Pantr1 underlines the importance of the FOXG1/Pantr1 regulative network.
Project description:Recent studies have revealed the importance of long noncoding RNAs (lncRNAs) as tissue-specific regulators of gene expression. There is ample evidence that distinct types of vasculature undergo tight transcriptional control to preserve their structure, identity, and functions. We determined, for the first time, the global lineage-specific lncRNAome of human dermal blood and lymphatic endothelial cells (BECs and LECs), combining RNA-Seq and CAGE-Seq. A subsequent genome-wide antisense oligonucleotide-knockdown profiling of two BEC- and two LEC-specific lncRNAs identified LETR1 as a critical gatekeeper of the global LEC transcriptome. Deep RNA-DNA and RNA-protein interaction studies, and phenotype rescue analyses revealed that LETR1 is a nuclear trans-acting lncRNA modulating, via key epigenetic factors, the expression of essential target genes governing the growth and migratory ability of LECs. Together, our study provides new evidence supporting the intriguing concept that every cell type expresses precise lncRNA signatures to control lineage-specific regulatory programs.
Project description:Purpose: We performed RNA-Immunoprecipitation in Tandem (RIPiT) experiments against human Staufen1 (Stau1) to identify its precise RNA binding sites in a transcriptome-wide manner. To monitor the consequences of Stau1 binding in terms of target mRNA levels and ribosome occupancy, we modified the levels of endogenous Stau1 in cells by siRNA or overexpression and performed RNA-sequencing and ribosome-footprinting experiments. Staufen1 (Stau1) is a double-stranded RNA (dsRNA) binding protein implicated in mRNA transport, regulation of translation, mRNA decay and stress granule homeostasis. Here we combined RNA-Immunoprecipitation in Tandem (RIPiT) with RNase footprinting, formaldehyde crosslinking, sonication-mediated RNA fragmentation and deep sequencing to map Staufen1 binding sites transcriptome-wide. We find that Stau1 binds complex secondary structures containing multiple short helices, many of which are formed by inverted Alu elements in annotated 3'UTRs or in "strongly distal" 3'UTRs extending far beyond the canonical polyadenylation signal. Stau1 also interacts with both actively translating ribosomes and with mRNA coding sequences (CDS) and 3'UTRs in proportion to their GC-content and internal secondary structure-forming propensity. On mRNAs with high CDS GC-content, higher Stau1 levels lead to greater ribosome densities, suggesting a general role for Stau1 in modulating the ability of ribosomes to elongate through secondary structures located in CDS regions. We used HEK293 cells expressing near endogenous levels of wild-type Flag-Stau1 (65KDa isoform with an N-Terminal Flag tag). As a control we used a mutant version of Stau1 that is not functional for dsRNA binding. Formaldehyde crosslinking experiments and RNase footprinting experiments were done in two biological replicates. All RNASeq, Ribosome footprinting and PAS-Seq were done in two biological replicates.
Project description:Transcript abundance results from the balance between transcription and mRNA decay, and varies pervasively in humans. We have examined the effect of DNA variation on mRNA half-life differences by conducting a genome-wide survey of mRNA stability in seven human HapMap lymphoblastoid cell lines (LCLs). We determined the mRNA half-life for each gene from the ratio of 4-thio-uridine (4sU)-labeled nascent RNAs to total RNAs. 5,145 (46%) of 11,132 analyzed genes showed inter-individual mRNA half-life differences at a false discovery rate, FDR<0.05. As previously reported, we found transcription to be the main factor influencing transcript abundance. Although mRNA half-life explained only ~6% of transcript abundance on average, it explained ~16% for the subset of genes (~10%) showing inter-individual mRNA half-life differences (P<0.001). We confirmed previously reported correlations of mRNA half-life with transcript length, 3M-bM-^@M-^Y-UTR length, and number of exon-junctions per kb of transcript. The number of miRNA targets in 3M-bM-^@M-^Y-UTRs was negatively correlated with half-life (P=2.2M-CM-^W10-16), a new observation that is consistent with the role of miRNA in inducing mRNA degradation. Notably, coding GC and GC3 content showed positive correlations with mRNA half-life in genes with inter-individual mRNA half-life differences, implying a role of mRNA stability in shaping synonymous codon usage bias. Consistently, G or C alleles of coding SNPs were found associated with longer mRNA half-life (P=0.021). As expected, we also found that nonsense SNPs were associated with shorter mRNA half-life (P=0.009). Our results strongly suggest that inter-individual mRNA stability differences are widespread and affected by DNA sequence and composition variation. A total of 7 HapMap LCLs were used to measure mRNA half-life. Total RNAs and the 4sU-labeled-newly synthesized RNAs (nascent RNAs) were isolated from the same cell culture and were assayed simultaneously with human Exon array. For 3 LCLs, we included 3 biological replicates (i.e., independent cell cultures) and for 1 LCL we also included technical duplicates. mRNA half-life was calculated from the ratio of nascent RNAs/total RNAs. We used ANOVA to test inter-individual difference of mRNA half-life between 3 subjects who have biological replicates and technical duplicates. We examined the Spearman rank correlation of mRNA half-life with a number of gene features, including transcript length, intron length, 5'-UTR length and folding energy, 3'-UTR length and folding energy, microRNA target sites, GC and GC3 contents, etc. We also performed linear regression to test the effects of specific type of sequence variants (nonsense SNPs, SNPs within miRNA target sites, and coding synonymous and nonsynonymous SNPs) on mRNA half-life across 3 subjects that have whole genome sequencing data available (1000 genome project June 2011 release).
Project description:Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol_II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adapter protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1/COMPASS H3K4 methyltransferase and the nuclear Protein Phosphatase 1 (PP1) complexes to the initiating Pol_II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1 or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes, active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. polyA-mRNAs or 4sU-labeled RNAs from BMDMs, either untreated or treated for with lipopolysaccharide (LPS) for the indicated time. Experiments were carried out in cells containing either a short hairpin targeting either of these: 1) Wdr82; 2) Set1a+Set1b; 3) Pnuts; or the empty vector (LMP) or a scrambled as a control. When specified, cells were pre-treated with 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) in order to prevent RNA polymerase II elongation.
Project description:UV-light-induced protein-RNA cross-linking followed by MS analysis was used to identify RNA-binding regions of enhancer RNAs (eRNAs) to the negative elongation factor (NELF) complex, and NELF as part of the paused elongation complex (PEC) of human RNA polymerase II.
Project description:Mechanisms used by positive-stranded RNA viruses to control the translation-replication switch remain largely unexplored. Using metabolic labeling coupled with quantitative proteomics analyses, we unraveled the protein composition of temporal ribonucleoprotein complexes (RNPs) isolated during early and late enterovirus A71 (EV-A71) infection. Comparing the RNP components at the eclipse and maturation phase, representing early and late infection, revealed RNP remodeling over time by exchanging nuclear with cytoplasmic proteins. Among the nuclear proteins, EV-A71 infection induced the phosphorylation and cytoplasmic re-localization of nuclear SR proteins. During early infection, phosphorylated SR proteins cofractionated with the translation machinery rather than the replication organelles. During late infection, this co-localization, as well as the EV-A71-induced phosphorylated SR proteins, was no longer detected. Inhibition of SR protein phosphorylation by the kinase inhibitors SRPKIN-1 and TG003 significantly reduced the replication of several enteroviruses. Our results demonstrate the importance of phosphoregulation of SR proteins during enterovirus replication and reveal a potential target for broad-spectrum antivirals.
Project description:Nuclear and cytoplasmic RNA were extracted by hypotonic cell lysis from D.-mel2 cell knock down by RNAi against dU2AF50 or with non-specific dsRNA.