ChIp-Chip using RNAP II, CREB C/EBPb and cJun antibody in undifferentiated or differentiated keratinocytes (ChIP-Chip)
Ontology highlight
ABSTRACT: Combinatorial recruitment of CREB, C/EBPb and Jun determines activation of promoters upon keratinocyte differentiation Chromatin immunoprecipitation (ChIP) of RNAP II, CREB C/EBPb and cJun in undifferentiated or differentiated keratinocytes demonstrate recruitment of RNAP II to promoters bound by combination of specific transcription factors comparison of undifferentiated and differentated keratinocytes
Project description:Combinatorial recruitment of CREB, C/EBPb and Jun determines activation of promoters upon keratinocyte differentiation Chromatin immunoprecipitation (ChIP) of RNAP II, CREB C/EBPb and cJun in undifferentiated or differentiated keratinocytes demonstrate recruitment of RNAP II to promoters bound by combination of specific transcription factors
Project description:Combinatorial recruitment of CREB, C/EBPb and Jun determines activation of promoters upon keratinocyte differentiation Chromatin immunoprecipitation (ChIP) of RNAP II, CREB C/EBPb and cJun in undifferentiated or differentiated keratinocytes demonstrate recruitment of RNAP II to promoters bound by combination of specific transcription factors. Analysis of mRNA expression data from contrl keratinocytes or keratinovtyes where binding of transcription factors is disrupted demonstrate functional requirements for ceratin class of promoters
Project description:Genome-wide identification of RNA polymerase (RNAP) binding sites were performed in Klebsiella pneumoniae MGH 78578 (KP). Anti-RNAP is used to capture the RNAP in KP. ChIP-chip was performed on tiling array specifically made for KP. Comparison ChIP by anti-RNAP antibody vs ChIP by normal mouse IgG (control, mock IP)
Project description:The in vivo trafficking patterns on DNA by the bacterial regulators of transcript elongation Sigma70, Rho, NusA, and NusG and the explanation for high promoter-proximal levels or peaks of RNA polymerase (RNAP) are unknown. Genome-wide ChIP-chip on E. coli revealed distinct association patterns of regulators as RNAP transcribes away from promoters (Rho first, then NusA, and then NusG). However, the interactions of elongating complexes with these regulators, including a weak interaction with Sigma70, did not differ significantly among most transcription units. A modest variation of NusG signal among genes reflected increased NusG interaction as transcription progresses, rather than functional specialization of elongating complexes. Promoter-proximal RNAP peaks were offset from Sigma70 peaks in the direction of transcription and co-occurred with NusA and Rho peaks, suggesting that the RNAP peaks reflected elongating, rather than initiating, complexes. However, inhibition of Rho did not increase RNAP levels within genes downstream of the RNAP peaks, suggesting the peaks are caused by a mechanism other than simple Rho-dependent attenuation. Chromatin immunoprecipitation (ChIP) experiments were performed using antibodies against RNA polymerase (Beta' subunit), Sigma70, NusA, NusG, or Rho. Differentially labeled ChIP DNA and genomic DNA were competitively hybridized to an E. coli K-12 MG1655 tiling array with overlapping probes at ~24bp spacing across the entire genome. The series contains 17 total datasets.
Project description:The transcription termination factor Rho is a global regulator of RNA polymerase (RNAP). Although individual Rho-dependent terminators have been studied extensively, less is known about the sites of RNAP regulation by Rho on a genome-wide scale. Using chromatin immunoprecipitation and microarrays (ChIP-chip), we examined changes in the distribution of Escherichia coli RNAP in response to the Rho-specific inhibitor bicyclomycin (BCM). We found ~200 Rho-terminated loci that were divided evenly into two classes: intergenic (at the ends of genes) and intragenic (within genes). The intergenic class contained noncoding RNAs such as small RNAs (sRNAs) and transfer RNAs (tRNAs), establishing a previously unappreciated role of Rho in termination of stable RNA synthesis. The intragenic class of terminators included a novel set of short antisense transcripts, as judged by a shift in the distribution of RNAP in BCM-treated cells that was opposite to the direction of the corresponding gene. These Rho-terminated antisense transcripts point to a novel role of noncoding transcription in E. coli gene regulation that may resemble the ubiquitous noncoding transcription recently found to play myriad roles in eukaryotic gene regulation. Chromatin immunoprecipitation (ChIP) experiments were performed using antibodies against RNA polymerase (Beta or Beta' subunit) in cells treated with 20ug/ml bicyclomycin or untreated cells. Differentially labeled ChIP DNA and genomic DNA were competitively hybridized to an E. coli K-12 MG1655 tiling array with overlapping probes at ~12bp spacing across the entire genome. The series contains 4 datasets.
Project description:Mapping the occupancy of FNR, HNS, and IHF throughout the genome of Escherchia coli MG1655 K-12 using an affinity purified antibody under anerobic growth conditions. We also mapped the binding of the M-CM-^_ subunit of RNA Polymerase under both aerobic and anaerobic growth conditions. As a control, we also performed ChIP-chip on FNR in a M-bM-^HM-^Ffnr mutant strain of Escherchia coli MG1655 K-12. We also examined FNR immunoprecipitation at various FNR concentrations using IPTG and Ptac::fnr (PK8263). The M-bM-^HM-^Fhns/M-bM-^HM-^FstpA strains were also used. Descirbed in the manuscript Genome-scale Analysis of E. coli FNR Reveals the Complexity of Bacterial Regulon Structure Mapping of occupancy of FNR, NNS, IHF and M-CM-^_ of RNAP in the genome of Escherchia coli MG1655 K-12 under aerobic or anaerobic growth conditions. Immunoprecipitated DNA compared to INPUT for each sample.
Project description:ChIP-on-chip analysis of RNAP and RpoD binding to the Salmonella enterica serovar Typhimurium chromosome demonstrated a high degree of overlap between RNAP and RpoD binding and provided us with important insights into the global distribution of these factors. Furthermore this data was correlated with information on the location of 1873 transcription start sites identified by RNA-Seq technology, thereby providing a detailed transcriptional map of Salmonella Typhimurium. Analysis of RNAP, RNAP-Rifampicin and and RpoD binding in Luria Broth (LB)
Project description:It has been reported that PHF1, CUL4B and PRMT5 all play important roles in epigenetic regulation. We reported that PHF1, CRL4B and PRMT5 may act as a complex in transcriptional regulation and have a vital effect in breast cancer progression. So we performed ChIP-on-chip assays to find unique promoters co-targeted by PHF1, CUL4B and PRMT5. PHF1, CUL4B and PRMT5 have a predominant cooperation, at least in MDA-MB-231 cells. comparison of PHF1, CUL4B and PRMT5 target genes
Project description:E2F2 is essential for the maintenance of T lymphocyte quiescence. To identify the full set of E2F2 target genes, and to gain further understanding of the role of E2F2 in transcriptional regulation, we have performed ChIP-chip analyses across the genome of lymph node-derived T lymphocytes. Here we show that during quiescence, E2F2 binds the promoters of a large number of genes involved in DNA metabolism and cell cycle regulation, concomitant with their transcriptional silencing. We performed 3 ChIP-chip experiments with an antibody against E2F2 and another 3 ChIP-chip experiments with an antibody against SV40TAg (irrelevant antibody).