Epigenetic regulation of sex determination by the histone demethylase Jmjd1a
Ontology highlight
ABSTRACT: Developmental gene expression is defined through cross-talk between the function of transcription factors and epigenetic status including histone modification. Although several known transcription factors play crucial roles in mammalian sex determination, how chromatin regulation contributes to this process is unknown. We observed male-to-female sex reversal in mice lacking the H3K9 demethylase Jmjd1a, and found that Jmjd1a directly regulates expression of the mammalian Y chromosome sex-determining gene Sry, by regulating H3K9me2 marks. These studies reveal a pivotal role for epigenetic regulation in mammalian sex determination, and provide new impetus for identifying additional causes of disorders of sex determination by environmental factors. Gene expression patterns were measured in gonadal somatic cells of Jmjd1a mutant and control embryos at E11.5. Three biological replicates were performed in each group.
Project description:Developmental gene expression is defined through cross-talk between the function of transcription factors and epigenetic status including histone modification. Although several known transcription factors play crucial roles in mammalian sex determination, how chromatin regulation contributes to this process is unknown. We observed male-to-female sex reversal in mice lacking the H3K9 demethylase Jmjd1a, and found that Jmjd1a directly regulates expression of the mammalian Y chromosome sex-determining gene Sry, by regulating H3K9me2 marks. These studies reveal a pivotal role for epigenetic regulation in mammalian sex determination, and provide new impetus for identifying additional causes of disorders of sex determination by environmental factors.
Project description:The cascade of molecular events involved in mammalian sex determination has been shown to involve the SRY gene, but specific downstream events have eluded researchers for decades. The current study identifies one of the first direct downstream targets of the male sex-determining factor SRY as the basic-helix-loop-helix (bHLH) transcription factor TCF21. SRY was found to directly associate with the Tcf21 promoter SRY/SOX9 response element both in vitro and in vivo during male sex determination. TCF21 was found to promote an in vitro sex reversal of embryonic ovarian cells to promote precursor Sertoli cell differentiation. Therefore, SRY acts directly on the Tcf21 promoter to, in part, initiate a cascade of events associated with Sertoli cell differentiation and embryonic testis development. We used microarrays to determine genes whose expression was stimulated in rat E13 ovarian cell sub-cultures in the presence of a pCMV-myc-expression plasmid over-expressing the Sry, Tsf21, and/or Tcf12 (Reb-alfa) genes. RNA samples from the control group (untreated E13 rat ovarian cells) are compared to RNA from 4 groups of treated E13 rat ovarian cells: 1) Sry overexpressing, 2) Tcf21 overexpressing, 3) Tcf12 (Reb alfa) overexpressing, and 4) Tcf21 + Tcf12 (Reb-alfa) overexpressing. Untreated E13 testis cell sub-cultures were also analyzed. 3 biological replicates each group.
Project description:The aim of the study was to identify differentially expressed genes, isoforms and AS modifications accompanying Gonadal Sex Determination in mice. We performed a Rna-Seq analysis of XX and XY gonads during sex determination on embryonic days 11 (E11) and 12 (E12). RNA-seq libraries were prepared from grouped gonads from E11 and E12 males and females. The cDNA libraries were sequenced using a HiSeq2500 v4 chemistry system
Project description:To assess if human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) could be induce to acquire dermal papilla (DP) properties (especially hair inductive capacity), hiPSCs were initially programmed in serum-free MSC medium with FGF, TGFbeta and PDGF. Subsequently, hiMSCs were exposed to retinoic acid and activators of WNT, BMP and FGF signaling pathways. Global gene expression profiles were compared among primarily cultured human DP cells, hiPSC-MSCs before and after induction. Human dermal papillae were microdissected and cultured from different donors. Induction from hiPSCs to MSCs and subsequent sorting of CD271+CD90+ subpopulation and thier induction to DP was performed using WD39 hiPSC lines in two independent experimentations to generate hiPSC-MSC-1,hiPSC-MSC-2 ipDPSC-1 and ipDPSC-2. Funding: The Human Stem Cells Informatization Project of the Ministry of Health, Labour and Welfare, Japan
Project description:Expression profiling of micro RNAs in mouse embryonic gonads before (11.5 days post coitum) and after (13.5 days post coitum) the critical period of sex determination
Project description:The aim of the study was to identify differentially expressed genes during Gonadal Sex Determination in cattle. We performed a Rna-Seq analysis of XX and XY gonads during sex determination on embryonic days 35 (D35), 39 (D39) and 43 (D43). RNA-seq libraries were prepared from grouped gonads from D35, D39 and D43 males and females.
Project description:A major event in mammalian male sex determination is the induction of the testis determining factor Sry and its downstream gene Sox9. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. A modified ChIP-Chip analysis using a comparative hybridization was used to identify 71 direct downstream binding targets for SRY and 109 binding targets for SOX9. Interestingly, only 5 gene targets overlapped between SRY and SOX9. In addition to the direct response element binding gene targets, a large number of atypical binding gene targets were identified for both SRY and SOX9. Bioinformatic analysis of the downstream binding targets identified gene networks and cellular pathways potentially involved in the induction of Sertoli cell differentiation and testis development. The specific DNA sequence binding site motifs for both SRY and SOX9 were identified. Observations provide insights into the molecular control of male gonadal sex determination. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. At embryonic day 13 (E13) of pregnancy rats were euthanized and embryonic gonads were collected for chromatin. A modified ChIP-Chip analysis using a comparative hybridization was used to identify direct downstream binding targets for SRY and for SOX9. Then, bioinformatic analysis of the downstream binding targets was done to identify gene networks and cellular pathways that are potentially involved in the induction of Sertoli cell differentiation and testis development.
Project description:A major event in mammalian male sex determination is the induction of the testis determining factor Sry and its downstream gene Sox9. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. A modified ChIP-Chip analysis using a comparative hybridization was used to identify 71 direct downstream binding targets for SRY and 109 binding targets for SOX9. Interestingly, only 5 gene targets overlapped between SRY and SOX9. In addition to the direct response element binding gene targets, a large number of atypical binding gene targets were identified for both SRY and SOX9. Bioinformatic analysis of the downstream binding targets identified gene networks and cellular pathways potentially involved in the induction of Sertoli cell differentiation and testis development. The specific DNA sequence binding site motifs for both SRY and SOX9 were identified. Observations provide insights into the molecular control of male gonadal sex determination. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. At embryonic day 13 (E13) of pregnancy rats were euthanized and embryonic gonads were collected for chromatin. A modified ChIP-Chip analysis using a comparative hybridization was used to identify direct downstream binding targets for SRY and for SOX9. Then, bioinformatic analysis of the downstream binding targets was done to identify gene networks and cellular pathways that are potentially involved in the induction of Sertoli cell differentiation and testis development.