RNA-seq analysis of recombinant Synechocystis sp. 6803 provides important insights for understanding polyhydroxyalkanoate production in cyanobacteria under photoautotrophic conditions
Ontology highlight
ABSTRACT: The direct photosynthetic production of polyhydroxyalkanoate in cyanobacteria was improved by increasing carbon flux to biosynthetic pathway and introducing enzyme with higher activity. To understand the global transcriptional changes under photoautotrophic PHA biosynthesis conditions, RNA-seq analysis was performed. Transcriptomes of recombinant Synechocystis sp. with different PHA-producing potential (three strains, two biological replicates for each strain) were analyzed.
Project description:The direct photosynthetic production of polyhydroxyalkanoate in cyanobacteria was improved by increasing carbon flux to biosynthetic pathway and introducing enzyme with higher activity. To understand the global transcriptional changes under photoautotrophic PHA biosynthesis conditions, RNA-seq analysis was performed.
Project description:Cyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Besides being able to grow photoautotrophically, some cyanobacteria are also capable to grow photoheterotrophically, where they use reduced organic compounds as carbon source, or even completely heterotrophically by using reduced organic compounds as carbon and energy source. The well characterized cyanobacterium Synechocystis sp. PCC 6803 can grow in darkness under light-activated heterotrophic growth (LAHG) conditions by using glucose as carbon and energy source. In the present work, we combined pre-fractioning of Synechocystis cellular membranes with a global proteome and lipidome analysis, to shift the analytical focus towards the rearrangement of the internal thylakoid membrane system observed in Synechocystis cells under LAHG conditions.
Project description:Ethylene is a gaseous signal sensed by plants and bacteria. Heterologous expression of the ethylene-forming enzyme (EFE) from Pseudomonas syringae in cyanobacteria leads to the production of ethylene under photoautotrophic conditions. The recent characterization of an ethylene responsive signaling pathway affecting phototaxis in the cyanobacterium Synechocystis sp. PCC 6803 implies that biotechnologically relevant ethylene synthesis may induce regulatory processes which are not related to changes in the metabolism. Here we provide data that endogenously produced ethylene accelerates movement of cells towards light. Microarray analysis demonstrates that ethylene deactivates transcription from the csiR1/lsiR promoter which is under control of the two-component system consisting of the ethylene and UV-A-sensing histidine kinase UirS and the DNA-binding response regulator UirR. Surprisingly, only very few other transcriptional changes were detected in the microarray analysis providing no direct hints to possible bottlenecks in phototrophic ethylene production.
Project description:Protein phosphorylation via serine/threonine protein kinases (Spk) is a widespread mechanism to adjust cellular processes toward changing environmental conditions. To study their role(s) in cyanobacteria, we established a collection of 11 completely segregated spk mutants among the 12 annotated Spk’s in the model cyanobacterium Synechocystis sp. PCC 6803. Screening of the mutant collection revealed that especially the mutant defective in SpkB encoded by slr1697 showed clear deviations compared to wild type (WT) regarding carbon metabolism, i.e., a reduced growth rate at low CO2 and in the presence of glucose, different glycogen accumulation patterns, and a higher tolerance to external H2O2 than the WT. The proteome of ∆spkB showed several distinct differences compared to WT, which indicate changes of the cell surface but also metabolic functions. A phospho-proteome analysis revealed decreased phosphorylation of the carboxysome-associated protein CcmM and the regulatory PII protein in the mutant compared to WT, whereas the allophycocyanin alpha subunit was stronger phosphorylated. The decreased phosphorylation of PII was verified in Western-blot experiments, indicating a clearly delayed PII phosphorylation in cells shifted from nitrate-containing to nitrate-free medium. Furthermore, the mutant ∆spkB showed differences in the state transition consistent with the changed phosphorylation of allophycocyanin. Collectively our results indicate that SpkB is an important regulator under different environmental conditions in Synechocystis and seems to interact in the PII phosphorylation and probably with further substrates in a kinase network.
Project description:The 6S RNA is a global transcriptional riboregulator, which is exceptionally widespread among most bacterial phyla. While its role is already well-characterized in heterotrophic bacteria, we subjected a cyanobacterial homolog to functional analysis, thereby extending the scope of 6S RNA action to the special challenges of photoautotrophic lifestyles. This study reveals 6S RNA as an integral part of the cellular response of Synechocystis sp. PCC 6803 to changing nitrogen availability. Physiological characterization of a 6S RNA deletion strain (ÎssaA) demonstrates a delay in the recovery from nitrogen starvation. Significantly decelerated phycobilisome reassembly and glycogen degradation is accompanied with reduced photosynthetic activity compared to the wild type. Transcriptome profiling further revealed that predominantly genes encoding components of both photosystems, ATP synthase and the phycobilisomes were negatively affected in the ÎssaA mutant. In vivo pull-down studies of the RNA polymerase complex further indicate a promoting effect of 6S RNA on the recruitment of the cyanobacterial housekeeping sigma factor SigA, concurrently supporting dissociation of group II sigma factors during recovery from nitrogen starvation. According to these results, 6S RNA supports a rapid adaptation to changing nitrogen conditions by regulating the switch from group II sigma factors SigB / SigC to SigE / SigA dependent transcription. We performed microarray analysis of total RNA from wild-type and âssaA cultures that were starved for nitrogen for seven days and recovered over a period of 48 hours. Sampling time points were t1 = 1h +N, t2 = 4h +N and t3 = 22h +N after nitrogen recovery. Samples were taken in biological replicates.
Project description:RNA-seq analysis of recombinant Synechocystis sp. 6803 provides important insights for understanding polyhydroxyalkanoate production in cyanobacteria under photoautotrophic conditions
Project description:Photoautotrophic cyanobacteria assimilate the greenhouse gas carbon dioxide as their sole carbon source for producing useful bioproducts. However, harvesting the cells from their liquid media is a major bottleneck in the process. Thus, an easy-to-harvest method, such as auto-flocculation, is desirable. Here, we found that cyanobacterium Synechocystis sp. PCC 6803 co-flocculated with a natural fungal contamination in the presence of the antibiotic erythromycin (EM) but not without EM. The fungi in the co-flocculated biomass were isolated and found to consist of five species with the filamentous Purpureocillium lilacinum and Aspergillus protuberus making up 71% of the overall fungal population. The optimal co-cultivation for flocculation was an initial 5 mg (fresh weight) of fungi, an initial cell density of Synechocystis of 0.2 OD730, 10 µM EM, and 14 days of cultivation in 100 mL of BG11 medium with no organic compound. This yielded 248 ± 28 mg/L of the Synechocystis-fungi flocculated biomass from 560 ± 35 mg/L of total biomass, a 44 ± 2 % biomass flocculation efficiency. Furthermore, the EM treated Synechocystis cells in the Synechocystis-fungi flocculate had a normal cell color and morphology, while those in the axenic suspension exhibited strong chlorosis. Thus, the occurrence of the Synechocystis-fungi flocculation was mediated by EM, and the co-flocculation with the fungi helped Synechocystis to alleviate the negative effect of EM. Transcriptomic analysis of suspended and flocculated (with the fungi) Synechocystis cells suggested that the EM-mediated co-flocculation was a result of down-regulation of the minor pilin genes and up-regulation of several genes including the chaperone gene for pilin regulation, the S-layer protein genes, the exopolysaccharide-polymerization gene, and the genes for signaling proteins involved in cell attachment and abiotic-stress responses. The EM treatment may be applied in the co-culture between other cyanobacteria and fungi to mediate cell bio-flocculation.
Project description:Photoautotrophic cyanobacteria assimilate the greenhouse gas carbon dioxide as their sole carbon source for producing useful bioproducts. However, harvesting the cells from their liquid media is a major bottleneck in the process. Thus, an easy-to-harvest method, such as auto-flocculation, is desirable. Here, we found that cyanobacterium Synechocystis sp. PCC 6803 co-flocculated with a natural fungal contamination in the presence of the antibiotic erythromycin (EM) but not without EM. The fungi in the co-flocculated biomass were isolated and found to consist of five species with the filamentous Purpureocillium lilacinum and Aspergillus protuberus making up 71% of the overall fungal population. The optimal co-cultivation for flocculation was an initial 5 mg (fresh weight) of fungi, an initial cell density of Synechocystis of 0.2 OD730, 10 µM EM, and 14 days of cultivation in 100 mL of BG11 medium with no organic compound. This yielded 248 ± 28 mg/L of the Synechocystis-fungi flocculated biomass from 560 ± 35 mg/L of total biomass, a 44 ± 2 % biomass flocculation efficiency. Furthermore, the EM treated Synechocystis cells in the Synechocystis-fungi flocculate had a normal cell color and morphology, while those in the axenic suspension exhibited strong chlorosis. Thus, the occurrence of the Synechocystis-fungi flocculation was mediated by EM, and the co-flocculation with the fungi helped Synechocystis to alleviate the negative effect of EM. Transcriptomic analysis of suspended and flocculated (with the fungi) Synechocystis cells suggested that the EM-mediated co-flocculation was a result of down-regulation of the minor pilin genes and up-regulation of several genes including the chaperone gene for pilin regulation, the S-layer protein genes, the exopolysaccharide-polymerization gene, and the genes for signaling proteins involved in cell attachment and abiotic-stress responses. The EM treatment may be applied in the co-culture between other cyanobacteria and fungi to mediate cell bio-flocculation.
Project description:Cyanobacteria, photoautotrophic prokaryotes, contribute significantly to the global photosynthesis and require large amounts of the essential micronutrient iron in order to maintain their Fe-rich photosynthetic apparatus. Here we use the model organism Synechocystis sp. PCC 6803 (later referred to Synechocystis) in both, standard and iron stress conditions, to study transcription and post-transcription regulation in iron deprivation. Although iron is one of the most abundant metals on earth, it is not soluble under aerobic conditions. Thus Synechocystis had to find ways to overcome iron deficiency. At the same time, however, free intracellular iron needs to be kept at permissive levels, as it becomes toxic under aerobic conditions by producing reactive oxygen species. For these reasons, complex regulatory networks have evolved to tightly control intracellular iron concentrations, ensuring its essential function yet avoiding cellular damage (Pierre Cornelis et al). In a previous study, we investigated iron deprivation in Synechocystis using customised amplification library for the analysis of global gene expression in the unicellular cyanobacterium (Hernández-Prieto et al, 2012; Georg et al, 2017),(Georg et al, 2017) but it is still little known about RNA stability in this organism. We now extend this study through a transcriptome wide half-life analysis in Synechocystis grown under standard and iron-limiting conditions using oligonucleotide microarrays that detect both protein-coding and non-coding transcripts (ncRNA). We used the antibiotic Rifampicin to stop the transcription. Samples were taken at time points 0 min (before the addition of rifampicin) and in a time series of 2 min, 4 min, 8 min, 16 min, 32 min and 64 min after its addition.