Nile tilapia (Oreochromis niloticus) gene expression profiling in males and females at early embryonic development (2, 5 and 9 days post fertilization )
Ontology highlight
ABSTRACT: Commercial production of tilapia relies on monosex cultures of males, which so far proved difficult to maintain in large scale production facilities. Thus, a better understanding of the genetic architecture of the complex trait of sex determination in tilapia is needed.We aimed to detect genes that were differentially expressed by gender at early embryonic development. Artificial fertilization of O. niloticus females with either sex-reversed males (ΔXX) or genetically-modified YY 'supermales' resulted in all-female and all-male embryos, respectively. Pools of all-female and all-male embryos at 2, 5 and 9 days post fertilization were used for custom Agilent eArray. 56 pool samples of Nile tilapia full siblings groups (female or male) at day 2, 5 or 9 post fertilization were subjected to total RNA extraction from whole embryo tissues and hybridized to the custom Agilent array. Each sample was yielded from different cross of artificial fertilization: six dams X five sires. The resulting gender were known based on the sire, sex-reversed males (ΔXX) or genetically-modified YY 'supermales' resulted in all-female and all-male embryos, respectively.
Project description:Commercial production of tilapia relies on monosex cultures of males, which so far proved difficult to maintain in large scale production facilities. Thus, a better understanding of the genetic architecture of the complex trait of sex determination in tilapia is needed.We aimed to detect genes that were differentially expressed by gender at early embryonic development. Artificial fertilization of O. niloticus females with either sex-reversed males (ΔXX) or genetically-modified YY 'supermales' resulted in all-female and all-male embryos, respectively. Pools of all-female and all-male embryos at 2, 5 and 9 days post fertilization were used for custom Agilent eArray.
Project description:In a wide range of synaptopathies a sex/gender bias in prevalence and clinical course has been reported. Therefore, analysis of the synaptic proteinaceous inventory in different brain regions in males and females is very desirable in understanding the molecular basis of brain function and the etiology of its diseases. In this study we analyzed the synaptic proteome of the prefrontal cortex, hippocampus, striatum and cerebellum in male and female mice. Our efforts should serve as a neurobiological framework to better understand the regional and sex/gender-specific synaptic function both in health and disease.
Project description:In this study, three small RNA libraries constructed from gonad tissues of XX female, XY male and YY super-male yellow catfish were sequenced by Solexa high-throughput sequencing technology to investigate the expression pattern of sex-biased microRNA. The sequencing data generated a total of 384 conserved miRNAs and 113 potential novel miRNAs, among which 23, 30 and 14 miRNAs were specifically detected in XX ovary, XY testis, and YY testis, respectively. Interestingly, more abundant piRNAs were found in ovary compared to testis in yellow catfish, which phenomenon is also observed in other fish species but opposite in mammalians. We detected a number of microRNAs differentially expressed between ovary and testis, such as miR-21, miR-462, miR-430 and -200 family. When compared the transcriptome between XY and YY testis, we observed relative lower expression of miR-141 and miR-429 in YY testis. Histological analysis indicated that YY super-males have more spermatids and less spermatocytes in spermatogenic cyst than XY males under the same age and culturing conditions. The expression level of miR-141 and 429 coincides with the progression of spermatogenesis both in yellow catfish and human. At last, The expression pattern of nine arbitrarily selected miRNAs detected by quantitative RT-PCR was consistent with the Solexa sequencing results. Our study provides a comprehensive miRNA transcriptome analysis for gonad of yellow catfish with different sex genotypes, and identifies a number of sex-biased miRNAs that are potentially involved in sex differentiation and spermatogenesis.
Project description:Uncertainties of traditional osteological methods in biological sex estimation can now be overcome with genomic and proteomic analyses. The combination of the three methodologies has been used for a better understanding of gender-related funerary rituals of the Iberian megalithic cemetery of Panoría. As a result, 44 individuals have been sexed including, for the first time, non-adults. Contrary to the male bias found in many Iberian and European megalithic monuments, the Panoría population shows a clear sex ratio imbalance in favour of females, with twice as many females as males. Furthermore, this imbalance is found regardless of the criterion considered: sex ratio by tomb, chronological period, method of sex estimation or age group. Biological relatedness and kinship have been explored as cultural explanations for this female-related bias. The results obtained for Panoría are indicative of a female-centred social structure, in which sex and/or gender would have influenced funerary rites and cultural traditions.
Project description:Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease that displays a significant gender difference in terms of incidence and severity. However, the underlying mechanisms accounting for sexual dimorphism remain unclear. To reveal the heterogeneity in the pathogenesis of SLE between male and female patients. PBMC were collected from 15 patients with SLE (7 males, 8 females) and 15 age-matched healthy controls (7 males, 8 females) for proteomic analysis. Enrichment analysis of proteomic data revealed that type I interferon signaling and neutrophil activation networks mapped to both male and female SLE, while male SLE has a higher level of neutrophil activation compared with female SLE. Our findings define gender heterogeneity in the pathogenesis of SLE and may facilitate the development of gender-specific treatments.
Project description:In fish, the sex determining mechanisms can broadly be classified as genotypic (GSD), temperature-dependent (TSD), or genotypic plus temperature effects (GSD+TE). For the fish species with TSD or GSD+TE, extremely high or low temperature can affect its sex determination and differentiation. For long time, the underlying changes in DNA methylation that occur during high or low temperature induced sex reversal have not been fully clarified. In this study, we used Nile tilapia as a model to perform a genome-wide survey of differences in DNA methylation in female and male gonads between control and high temperature induced groups using methylated DNA immunoprecipitation (MeDIP). We identified the high temperature induction-related differentially methylated regions (DMRs), and performed functional enrichment analysis for genes exhibiting DMR. These identified differentially methylated genes were potentially involved in the connection between environmental temperature and sex reversal in Nile tilapia. In this study, four samples (control females, CF; control males, CM; induced females, IF; induced males, IM) were analyzed.
Project description:Sex chromosomes evolved from autosomes many times across the eukaryote phylogeny. Several models have been proposed to explain this transition, some involving male and female sterility mutations linked in a region of suppressed recombination between X and Y (or Z/W, U/V) chromosomes. Comparative and experimental analysis of a reference genome assembly for a double haploid YY male garden asparagus (Asparagus officinalis L.) individual implicates separate but linked genes as responsible for sex determination. Dioecy has evolved recently within Asparagus and sex chromosomes are cytogenetically identical with the Y, harboring a megabase segment that is missing from the X. We show that deletion of this entire region results in a male-to-female conversion, whereas loss of a single suppressor of female development drives male-to-hermaphrodite conversion. A single copy anther-specific gene with a male sterile Arabidopsis knockout phenotype is also in the Y-specific region, supporting a two-gene model for sex chromosome evolution. Additionally, we test for the presence of Y-specific small RNA loci in several XX, XY, and YY genotypes that may be acting as sex determination loci.
Project description:Gender bias and the role of sex hormones in autoimmune diseases are well established. In specific-pathogen free (SPF) non-obese diabetic (NOD) mice females have 1.3-4.4 times higher incidence of Type 1 diabetes (T1D). Germ-free (GF) mice lose the gender bias (female/male ratio 1.1-1.2). Gut microbiota differed in males and females, a trend reversed by male castration, confirming that androgens influence gut microbiota. Colonization of GF NOD mice with defined microbiota revealed that some but not all lineages overrepresented in male mice supported a gender bias in T1D, and protection did not correlate with androgen levels. However, hormone-supported selective microbial lineage variation may work as a positive feedback mechanism contributing to the sexual dimorphism of autoimmune diseases. Gene expression analysis suggested pathways involved in protection of males from T1D by microbiota.
Project description:Both epidemiological data and scientific reports corroborate the higher incidence ofneuropathy and chronic pain in female gender not only in patients with metabolicdisorders but also in normometabolic subjects and in murine models. Our previousresults showed different immune and neuroimmune response to neuropathic pain(NeP) between male and female mice as well as a different metabolic pattern inproteins expressed in sciatic nerve. Here, we provide evidence that adipose tissue(AT) plays a contributing role in sex-dependent differences before and after peripheralnerve injury-induced NeP in mice. The metabolic parameters assessed, the metabolicprofile signature (metabolomics), the energy expenditure evaluation, the AT proteomicanalysis and the adipokines mobilization reveal a sex-specific AT response toperipheral nerve damage. Of interest, an alteration of lipolysis and fatty acids oxidation(FAO) emerges in females as well as an enhancement of whole-body energyexpenditure and higher secretion of sex hormones from AT, affecting glucose andinsulin metabolism. On the contrary, neuropathy in males induced an engagement ofglycolysis pathway, a decrease of systemic energy expenditure and unsaturated fattyacids levels. In males, AT responds favoring molecules useful in regenerativeprocesses and in the oxidative stress, as well as stimulating peroxisome proliferatoractivated receptors (PPARs) gamma subtype (PPAR-γ) and adiponectin.This study discloses new factors underlying the higher susceptibility of female sex toNeP, indicating in AT a crucial player for the regulation of sex-dependent inflammatoryand metabolic response to nerve lesion.
Project description:Sex affects function of the developing mammalian embryo as early as the preimplantation period. There were two goals of the current objective. The first was to determine the degree and nature of differences in gene expression between female and male embryos in the cow at the morula stage of development. The second objective was to determine whether DKK1, a molecule known to alter differentiation of the blastocyst, would affect gene expression differently for female and male morulae. In Experiment 1, female and male embryos were treated with DKK1 at Day 5 after insemination. Morulae were harvested 24 h after treatment, pooled in groups of 20 for microarray analysis and RNA subjected to analysis of gene expression by microarray hybridization. There were 662 differentially expressed genes between females and males and 128 of these genes had a fold change ≥ 1.5 between the two sexes. Of the genes upregulated in females, 49.5% were located in the X chromosome. Functional analysis predicted that cell survival was greater in female embryos. Experiment 2 involved a similar design except that transcripts for 12 genes previously reported to be affected by sex, DKK1 or the interaction were quantified by quantitative polymerase chain reaction. Expression of all genes tested that were affected by sex in experiment 1 was affected in a similar manner in Experiment 2. In contrast, effects of DKK1 on gene expression were largely not repeatable in Experiment 2. The exception was for the Hippo signaling gene AMOT, which was inhibited by DKK1. In Experiment 3, embryos produced by fertilization with unsorted sperm were treated with DKK1 at Day 5 and abundance of transcripts for CDX2, GATA6, and NANOG determined at Days 5, 6 and 7 after insemination. There was no effect of DKK1 on expression of any of the three genes. In conclusion, female and male bovine embryos have a different pattern of gene expression as early as the morula stage, and this is due to a large extent to expression of genes in the X chromosomes in females. Differential gene expression between female and male embryos is likely the basis for increased resistance to cell death signals in female embryos and disparity in responses of female and male embryos to changes in the maternal environment.