Transcriptional response to TNF-alpha in a panel of 17 human melanoma cell lines
Ontology highlight
ABSTRACT: A panel of 17 human melanoma cell lines with known BRAF and NRAS mutation status was stimulated with TNF-alpha for 72 hours. The goal of the study was to correlate the transcriptional response in BRAF versus NRAS mutated melanoma cell lines. Total RNA was obtained from a panel of 17 human melanoma cell lines treated for 72 hours with TNF-alpha or left untreated. Gene expression profiling was done using the Illumina Human HT12 v4 platform.
Project description:A panel of 17 human melanoma cell lines with known BRAF and NRAS mutation status was stimulated with TNF-alpha for 72 hours. The goal of the study was to correlate the transcriptional response in BRAF versus NRAS mutated melanoma cell lines.
Project description:We analyzed the transcriptional response of the human melanoma cell line MZ7 to TNF-alpha (24 hours) in a dose-dependent manner (TNF-alpha 10U/ml, 100U/ml, 1000U/ml) either transfected with control siRNA (siNT = non-targeting siRNA) or transfected with siRNAs (pool of 4 active and independent siRNAs) against the melanocytic transcription factor and lineage oncogene MITF. (Microphthalmia-associated transcription factor). The experiment was performed as biological duplicate. As MITF is critical for melanoma cell state control, we aimed to explore how MITF expression intersects with inflammation-induced plasticity pathways in melanoma. Total RNA was obtained from siRNA/TNF-treated MZ7 melanoma cell lines at various conditions and global gene expression profiling was done using the Illumina Human HT12 v4 platform.
Project description:Ma-Mel-15 human melanoma cell cultures were transiently transfected (RNAiMax, Lipofectamin) with control siRNA, siRNA against MITF (pool of 4 siRNAs), siRNA against c-JUN (pool of 4 siRNAs) or combinations of siMITF and siJUN. Cells were then either treated with TNF-alpha (1000U/ml) for 24 hours or left untreated. The experiment was performed as biological duplicates. We aimed to determine how c-JUN cooperates with acute MITF-loss in human melanoma cells to increase inflammatory responsiveness and cell plasticity. Total RNA was obtained from siRNA/TNF-treated Ma-Mel-15 melanoma cell lines and global gene expression profiling was done using the Illumina Human HT12 v4 platform.
Project description:In order to improve our understanding of microRNA (miRNA) deregulation in melanoma development and possible consequences for patient survival, miRNA expression profiles were determined, using an array based approach, in melanoma tumors, melanoma cell lines and normal melanocytes. Differentially expressed miRNAs were evaluated in relation to clinical characteristics, patient prognosis in terms of melanoma-specific survival, and mutational status for BRAF and NRAS. Agilent microarray platform containing 470 miRNAs was used to determine miRNA expression profiles in 3 normal melanocytes (as non-neoplastic control), 21 melanoma cell lines and 16 clinical samples from fresh frozen regional lymph node metastases. To validate the microarray platform, the expression levels of some miRNAs were evaluated using RT-PCR and the correlation between the two platforms was assessed using Pearson Correlation analysis. The results obtained were further verified and confirmed by RT-PCR in an independent set of melanoma samples. Association between deregulated miRNAs and survival was determined by Univariate Cox proportional hazards model and log rank test.
Project description:Oncogenic mutations in BRAF and NRAS occur in 70% of melanomas. Here we identify a microRNA, miR-146a, that is highly upregulated by oncogenic BRAF and NRAS. Expression of miR-146a increases the ability of human melanoma cells to proliferate in culture and form tumors in mice, whereas knockdown of miR-146a has the opposite effects. We show these oncogenic activities are due to miR-146a targeting the NUMB mRNA, a repressor of Notch signaling. Previous studies have shown that pre-miR-146a contains a single nucleotide polymorphism (C>G rs2910164). We find that the ability of pre-miR-146a/G to activate Notch signaling and promote oncogenesis is substantially higher than that of pre-miR-146a/C. Analysis of melanoma cell lines and matched patient samples indicates that during melanoma progression pre-miR-146a/G is enriched relative to pre-miR-146a/C, resulting from a C-to-G somatic mutation in pre-miR-146a/C. Collectively, our results reveal a central role for miR-146a in the initiation and progression of melanoma. SKMEL28 melanoma cell line stably expressing either an empty vector or pre-miR146a with either C or G SNP (SKMEL28-FG12, SKMEL28-miR-146a/C and SKMEL28-miR-146a/G) were used to prepare total RNA. Microarray analysis was performed by using biological replicates for each stable cell lines for a total of 6 samples.
Project description:We sought to understand the pathways involved in NRAS extinction over time using a doxycycline-dependent, inducible mouse model of melanoma. This data provides insights into the temporal dynamics of downstream NRAS signaling and helps to correlate differentially affected pathways. We used microarrays to determine which transcripts were affected by NRAS-Q61K extinction at 24, 48, and 72 hours after doxycycline withdrawal. This data was used in support of a separate dataset submitted to GEO entitled Comparison of the genetic extinction of NRAS to pharmacological MEK inhibition in an inducible mouse model of melanoma. The iNRAS-475 mouse melanoma cell line was injected intradermally into nude mice which were fed 2mg/ml doxycycline water. Tumors were allowed to reach 200-500mm3 after 6 weeks. Doxycyline was then withdrawn from the diet and tumors harvested at 24, 48, and 72 hours post-withdrawal.
Project description:Melanomas are often infiltrated by activated inflammatory cells. Thus, melanoma cells are very likely stimulated by inflammatory cytokines. In order to assess the impact of common inflammatory cytokines, we investigated the gene expression profile of melanoma cell lines before and after cytokine treatment in vitro. Experiment Overall Design: 5 human melanoma cell lines were treated with either IFN-α 1,000 U/ml, IFN-γ 100 U/ml or TNF-α 10 ng/ml for 72 hours, or were left untreated. We analyzed their expression profile with Affymetrix expression arrays.
Project description:Study of global gene expression differences in malignant melanoma cell lines with or without specific abberations in BRAF NRAS or CDKN2A.
Project description:Study of global gene expression differences in malignant melanoma cell lines with or without specific abberations in BRAF NRAS or CDKN2A. Expression .CEL files from Affymetrix HG-U133A 2.0 arrays using total RNA from 5 human cell lines derived from metastasized melanoma