Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny
Ontology highlight
ABSTRACT: Although Lgr5+ intestinal stem cells have been expanded in vitro as organoids, homogeneous culture of these cells has not been possible so far. Here we show that two small molecules, CHIR99021 and valproic acid, synergistically maintain self-renewal of mouse Lgr5+ intestinal stem cells, resulting in nearly homogeneous cultures. The colony-forming efficiency of cells from these cultures is ~100-fold greater than that of cells cultured in the absence of CHIR99021 and valproic acid, and multilineage differentiation ability is preserved. We made use of these homogeneous cultures to identify conditions employing simultaneous modulation of Wnt and Notch signaling to direct lineage differentiation into mature enterocytes, goblet cells and Paneth cells. Expansion in these culture conditions may be feasible for Lgr5+ cells from the mouse stomach and colon and from the human small intestine. These methods provide new tools for the study and application of multiple intestinal epithelial cell types. Total RNA was isolated from two independently established wild-type mouse small intestinal organoid lines after culture for 6 days in control condition or in the presence of CHIR99021, Valproic Acid (VPA) or both compounds. cRNA was labeled with Cy5 and hybridized against Cy3 labeled cRNA from control organoids (as an internal reference) on 4X44K Agilent Whole Mouse Genome dual colour Microarrays (G4122F), resulting in eight individual arrays.
Project description:While stem cells at the bottom of intestinal crypts have been isolated and expanded in vitro in the form of organoids, the self-renewal and differentiation of Lgr5+ stem cells in typical culture conditions cannot be easily controlled. Here we show that two small molecules, CHIR99021 and Valproic Acid, synergistica
Project description:Although Lgr5+ intestinal stem cells have been expanded in vitro as organoids, homogeneous culture of these cells has not been possible so far. Here we show that two small molecules, CHIR99021 and valproic acid, synergistically maintain self-renewal of mouse Lgr5+ intestinal stem cells, resulting in nearly homogeneous cultures. The colony-forming efficiency of cells from these cultures is ~100-fold greater than that of cells cultured in the absence of CHIR99021 and valproic acid, and multilineage differentiation ability is preserved. We made use of these homogeneous cultures to identify conditions employing simultaneous modulation of Wnt and Notch signaling to direct lineage differentiation into mature enterocytes, goblet cells and Paneth cells. Expansion in these culture conditions may be feasible for Lgr5+ cells from the mouse stomach and colon and from the human small intestine. These methods provide new tools for the study and application of multiple intestinal epithelial cell types.
Project description:Acetylcholine (ACh) has been considered a neurotransmitter residing in central, parasympathetic and neuromuscular synapses of mammals. Here, experiments using crypt-villus organoids that lack nerve and immune cells in culture led us to suggest that endogenous ACh is synthesized in the intestinal epithelium to evoke growth and differentiation of the organoids through activation of muscarinic ACh receptors (mAChRs). The extracts of the cultured organoids exhibit a noticeable capacity for ACh synthesis that is sensitive to a potent inhibitor of choline acetyltransferase (ChAT). Imaging mass spectrometry reveals distribution of endogenous ACh that is localized in intestinal epithelial layer in the cultured organoids as well as in mouse small intestinal epithelium in vivo, suggesting non-neural resources of ACh. Treatment of organoids with carbachol down-regulates growth of organoids and expression of marker gene for each epithelial cell. On the other hand, antagonists for mAChRs enhances growth and differentiation of organoids, indicating involvement of mAChRs in regulating proliferation and differentiation of Lgr5-positive stem cells. Collectively, our data provide evidence that endogenous ACh released from intestinal epithelium maintains homeostasis of intestinal epithelial cell growth and differentiation via mAChRs in mice. Gene expression patters of gut, crypt, y-organoid and o-organoid, respectively
Project description:In Rspondin-based three-dimensional cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. Here we report the establishment of tumor organoid cultures from 20 consecutive colorectal carcinoma (CRC) patients. For most, organoids were also generated from adjacent normal tissue. Organoids closely resemble the original tumor. The spectrum of genetic changes within the 'living biobank' agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43, rather than in APC. Organoid technology may fill the gap between cancer genetics and patient trials, complement cell line- and xenograft-based drug studies and allow personalized therapy design. Self-renewal of the intestinal epithelium is driven by Lgr5 stem cells located in crypts. We have recently developed a long-term culture system that maintains basic crypt physiology. Wnt signals are required for the maintenance of active crypt stem cells. Indeed, the Wnt agonist R-spondin1 induces dramatic crypt hyperplasia in vivo. R-spondin-1 is the ligand for Lgr5. Epidermal growth factor (EGF) signaling is associated with intestinal proliferation, while transgenic expression of Noggin induces a dramatic increase in crypt numbers. The combination of R-spondin-1, EGF, and Noggin in Matrigel sustains ever-expanding small intestinal organoids, which display all hallmarks of the original tissue in terms of architecture, cell type composition, and self-renewal dynamics. We adapted the culture condition for long-term expansion of human colonic epithelium and primary colonic adenocarcinoma, by adding nicotinamide, A83-01 (Alk inhibitor), Prostaglandin E2 and the p38 inhibitor SB202190. Of note, a two-dimensional culture method for cells from normal and malignant primary tissue has been described by Schlegel and colleagues. Here, we explore organoid technology to routinely establish and phenotypically annotate ‘paired organoids’ derived from adjacent tumor and healthy epithelium from CRC patients.
Project description:Stomach and intestinal adult epithelia harbor stem cells that are responsible for their continuous regeneration. Stomach and intestinal stem cells differ in their differentiation program and in the gene repertoire that they express. We show that single adult Lgr5-positive stem cells, isolated from 3D cultured small intestinal organoids, require Cdx2 to maintain their intestinal identity and are converted cell-autonomously into stomach-pyloric stem cells in the absence of this transcription factor. In order to obtain Cdx2null intestinal stem cells carrying the Lgr5-EGFP marker, 5-6 days old small intestinal organoids generated from Cdx2-/fl/Lgr5-EGFP-Ires-CreERT2 mice were incubated with 1 µM of 4-hydroxytamoxifen in intestinal culture medium for 16h to activate the Cre recombinase. Controls were 4-hydroxytamoxifen-untreated small intestinal (Control SI) and stomach (Control Sto) organoids issued from mice with the same genotype. The organoids were dissociated and sorted for EGFPhi. Cdx2null, Control SI and Control Sto clonal organoids were generated and expanded from Lgr5-EGFPhi single cells in stomach specific culture medium (ENRWfg) and RNA was isolated for RNA-Seq analysis. Cdx2+ Stomach (Sto) organoids were generated by infection of the wild type stomach organoids with lentiviral stock expressing Cdx2. They were cultured in stomach medium (ENRWfg) and RNA was isolated for RNA-Seq analysis
Project description:Genetically engineered human pluripotent stem cells (hPSCs) have been proposed as a source for transplantation therapies and are rapidly becoming valuable tools for human disease modeling. However, many of the potential applications are still limited by the lack of robust differentiation paradigms that allow for the isolation of defined functional tissues. These challenges could be overcome by the use of adult tissue stem cells derived from hPSCs, as their restricted potential could limit the differentiation towards other undesired linages, and allow in vitro expansion and long- term propagation of fully differentiated tissue. To isolate adult stem cells from hPSCs, we applied genome-editing to generate an LGR5-GFP reporter system and subsequently developed a differentiation protocol for human intestinal tissue comprising an adult stem cell niche and all major cell types of the adult intestine. This novel derivation protocol is highly robust and even permits the isolation of intestinal organoids without the LGR5 reporter. Transcriptional profiling, electron microscopy and functional analysis revealed that such human organoid cultures could be derived with high purity, and a composition and morphology similar to that of cultures obtained from human biopsies. Importantly, hPSC-derived organoids responded to the canonical signaling pathways that control self-renewal and differentiation in the adult human intestinal stem cell compartment. With our ability to genetically engineer hPSCs using site-specific nucleases, this adult stem cell system provides a novel platform by which to study human intestinal disease in vitro. RNA from primary organoid samples was isolated from organoid lines that were both cultured for 1-6 months and derived from duodenum, ileum, or rectum biopsies of human subjects as described previously (Sato et al., Gastroenterology 2011) grown in media called WENR+inhibitors. RNA was also isolated from various steps in the culturing and differentiation protocol.
Project description:The endodermal lining of the adult gastro-intestinal tract harbors stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation program and in the gene repertoire that they express. Both types of stem cells have been shown to grow from single cells into 3D structures (organoids) in vitro. We show that single adult Lgr5-positive stem cells, isolated from small intestinal organoids, require Cdx2 to maintain their intestinal identity and are converted cell-autonomously into pyloric stem cells in the absence of this transcription factor. Clonal descendants of Cdx2null small intestinal stem cells enter the gastric differentiation program instead of producing intestinal derivatives. Conversely, forced expression of Cdx2 in gastric organoids results in their intestinalization. The intestinal genetic program is thus critically dependent on the single transcription factor encoding gene Cdx2. Small intestinal crypts and stomach glands were isolated from Cdx2-/fl / Lgr5-EGFP-CreERT2 mice and cultured for a week in order to generate small intestinal (SI) and stomach (Sto) in vitro organoids. The Lgr5-CreERT2 enzyme activity has been induced by overnight 4-hydroxytamoxifen induction. Tamoxifen treated and untreated Lgr5-EGFPhi SI and Sto stem cells were FACS sorted and seeded back into ENRWfg (Sto med) culture conditions in order to generate Cdx2-/fl small intestinal (Control SI), Cdx2null small intestinal (Cdx2null SI) and Cdx2-/fl stomach (Control Sto) clonal organoids. Cdx2-/fl SI organoids and Cdx2-/fl Sto organoids have been also cultured in ENR (SI med) to induce differentiation. After some passages of clonal organoid expansion, RNA was isolated from Control SI, Cdx2null SI and Control Sto Lgr5-EGFPhi FACS sorted stem cell populations and from smal intestinal and stomach organoids cultured in different conditions and hybridized on Affymetrix Mouse Gene ST 1.1 arrays.
Project description:We isolated and selected intestinal adenoma organoids from Lgr5-EGFP-IRES-CreER; Apcflox/flox mice and added tamoxifen to induce the deletion of the Apc gene in the intestinal stem cells. Gene expressions on day7 and day20 after the addition of tamoxifen were compared, representing two stages with different colorectal cancer stem cell content. Total RNA obtained from Lgr5-EGFP-IRES-CreER; Apcflox/flox organoids were compared 7 days and 20 days after the addition of tamoxifen, cultured without the Wnt-agonist R-Spondin1.
Project description:We wanted to assess the role of Lef1 in ex vivo organoids using genetic mouse models of intestinal adenomas and scRNA-seq technology. Tumorigenesis was initiated by inducing Apc mutation in Lgr5+ stem cells. Intestinal cells of Lgr5-CreERT;Apc fl/fl (LApc) mouse and Lgr5-CreERT;Apc fl/fl; Lef1 fl/fl (LApcL) mouse were used to generate adenoma organoids. Organoids were cultured without growth factors for three passages and dissociated with Tryple express. We used WT mice as a control to distinguish adenoma cells. WT organoids were cultured with growth factors.
Project description:The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. We have recently demonstrated the presence of approximately six cycling Lgr5+ stem cells at the bottoms of small intestinal crypts1. We have now established long-term culture conditions under which single crypts undergo multiple crypt fission events, whilst simultanously generating villus-like epithelial domains in which all differentiated cell types are present. Single sorted Lgr5+ stem cells can also initiate these crypt-villus organoids. Tracing experiments indicate that the Lgr5+ stem cell hierarchy is maintained in organoids. We conclude that intestinal crypt-villus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche. Keywords: expression profiling Freshly isolated small intestinal crypts from two mice were divided into two parts. RNA was directly isolated from one part (RNeasy Mini Kit, Qiagen), the other part was cultured for one week according to the conditions described in the associated paper, followed by RNA isolation. We prepared labeled cRNA following the manufacturer’s instruction (Agilent Technologies). Differentially labelled cRNA from small intestinal crypts and organoids were hybridised separately for the two mice on a 4X44k Agilent Whole Mouse Genome dual colour Microarrays (G4122F) in two dye swap experiments, resulting in four individual arrays.