Gene expression profiling under exposure to high altitude hypoxic environment
Ontology highlight
ABSTRACT: Understanding molecular mechanism associated with high altitude exposure during acclimatization/adaptation/maladaptation. Data reveals specific components of the complex molecular circuitry underlying high altitude pulmonary edema. Individualized outcome prediction were constructed through expression profiling of 39400 genes in sea level sojourners who were acclimatized to high altitude and grouped as controls (n=14), high altitude natives (n=14) and individuals who developed high altitude pulmonary edema within 48-72 hours after air induction to high altitude (n=17).
Project description:Differential expression analysis comparing healthy volunteers at sea level and after acute exposure to altitude PBMCs were isolated from healthy volunteers participating in the United States Antarctic Program. Array data was processed using the Affymetrix HG U133 Plus 2 array
Project description:Understanding molecular mechanism associated with high altitude exposure during acclimatization/adaptation/maladaptation. Data reveals specific components of the complex molecular circuitry underlying high altitude pulmonary edema.
Project description:Apple (Malus domestica Borkh) is an important fruit crop cultivated in a broad range of environmental conditions. Apple fruit, and specifically peel tissue, ripening is a physiological process whose molecular regulatory networks response to different environments are still not sufficiently investigated. In this study, the influence of low (20 m) and high (750 m) altitude environmental conditions in peel tissue was assessed by physiological measurements combined with global metabolite and protein expression profiling during apple fruit development and ripening. Although apple fruit ripening was unaffected by the different environmental conditions, however several key color parameters, such as redness and the color percentage index, were induced by high altitude. Consistent with this, increased level of anthocyanin and other phenolic compounds, including cyanidin-3-O-galactoside, quercetin-3-O-rhamnoside, quercetin-3-O-rutinoside and chlorogenic acid were identified in apple peel at high altitude. Also, high altitude environment, particularly, at the ripening period, up-accumulated various carbohydrates (eg., arabinose, xylose and sucrose) while repressed glutamic acid and several related proteins such as glycine hydroxymethyltransferase and glutamate���glyoxylate aminotransferase. Other processes affected by high altitude concerned the TCA cycle, the synthesis of oxidative/defense enzymes, and the accumulation of photosynthetic proteins. Finally, we constructed a metabolite-protein network depicting the impact of altitude on peel ripening. These data provide insights into physiological processes linked to apple peel ripening across different climatic conditions and will assist in efforts to improve apple fruit appeal and quality.
Project description:In order to understand the chronic hypoxia (CH) effect upon the absence of dystrophin, Drosophila melanogaster wild type and the model for DMD (dmDys), in which all dystrophins expression was knocked out by iRNA, were exposed to high altitude hypoxia (hypobaric hypoxia) during a 16-day climbing period reaching the summit of Mount McKinley (6194 meters above sea level). Furthermore, dmDys and Drosophila wild type were exposed to normobaric hypoxia (hypoxic chamber) following the same oxygen levels observed during the climbing expedition and to normoxic conditions for comparison. Affymetrix GeneChip® profiling was performed for individual flies from each experimental group. CH-dmDys differentially expressed 1281 genes, whereas control group differentially expressed 57 genes. Eight heat shock protein genes detected in the CH-dmDys microarray study were down-regulated, instead of up-regulated as seen in wild type hypoxic flies. This result suggests a differential gene expression response to CH, which could affect muscle performance.These results suggest that dmDys is more sensitive to CH due to reduced muscle function and hypoxic stress response. In order to understand the chronic hypoxia (CH) effect upon the absence of dystrophin, Drosophila melanogaster wild type and the model for DMD (dmDys), in which all dystrophins expression was knocked out by iRNA, were exposed to high altitude hypoxia (hypobaric hypoxia) during a 16-day climbing period reaching the summit of Mount McKinley (6194 meters above sea level). Furthermore, dmDys and Drosophila wild type were exposed to normobaric hypoxia (hypoxic chamber) following the same oxygen levels observed during the climbing expedition and to normoxic conditions for comparison. Affymetrix GeneChip® profiling was performed for individual flies from each experimental group. CH-dmDys differentially expressed 1281 genes, whereas control group differentially expressed 57 genes. Eight heat shock protein genes detected in the CH-dmDys microarray study were down-regulated, instead of up-regulated as seen in wild type hypoxic flies. This result suggests a differential gene expression response to CH, which could affect muscle performance.These results suggest that dmDys is more sensitive to CH due to reduced muscle function and hypoxic stress response. Overall design: Adults wild type and dystrophic flies (3-5 days old) were exposed to hypobaric hypoxia for two weeks during the summer expedition to Mount McKinley, Alaska (6194 MASL). Another set of wild types and dystrophic flies were exposed to normobaric hypoxia according to the table I obtained during the climbing expedition. During the expedition, the flies were maintained in vials with regular molasses and covered by thermo isolation to avoid low temperature, keeping the temperature at 25C. The experiment performed in the laboratory also used vials with regular molasses and at 25C. Table I. Expedition log book for mount McKinley ascent. Information obtained during the ascent and summit of Mount McKinley, June 1st to June 16th of 2007. The oxygen pressure (PO2) was calculated from the barometric pressure. GNB means go and back from the mentioned point. DAY In order to understand the chronic hypoxia (CH) effect upon the absence of dystrophin, Drosophila melanogaster wild type and the model for DMD (dmDys), in which all dystrophins expression was knocked out by iRNA, were exposed to high altitude hypoxia (hypobaric hypoxia) during a 16-day climbing period reaching the summit of Mount McKinley (6194 meters above sea level). Furthermore, dmDys and Drosophila wild type were exposed to normobaric hypoxia (hypoxic chamber) following the same oxygen levels observed during the climbing expedition and to normoxic conditions for comparison. Affymetrix GeneChip® profiling was performed for individual flies from each experimental group. CH-dmDys differentially expressed 1281 genes, whereas control group differentially expressed 57 genes. Eight heat shock protein genes detected in the CH-dmDys microarray study were down-regulated, instead of up-regulated as seen in wild type hypoxic flies. This result suggests a differential gene expression response to CH, which could affect muscle performance.These results suggest that dmDys is more sensitive to CH due to reduced muscle function and hypoxic stress response. In order to understand the chronic hypoxia (CH) effect upon the absence of dystrophin, Drosophila melanogaster wild type and the model for DMD (dmDys), in which all dystrophins expression was knocked out by iRNA, were exposed to high altitude hypoxia (hypobaric hypoxia) during a 16-day climbing period reaching the summit of Mount McKinley (6194 meters above sea level). Furthermore, dmDys and Drosophila wild type were exposed to normobaric hypoxia (hypoxic chamber) following the same oxygen levels observed during the climbing expedition and to normoxic conditions for comparison. Affymetrix GeneChip® profiling was performed for individual flies from each experimental group. CH-dmDys differentially expressed 1281 genes, whereas control group differentially expressed 57 genes. Eight heat shock protein genes detected in the CH-dmDys microarray study were down-regulated, instead of up-regulated as seen in wild type hypoxic flies. This result suggests a differential gene expression response to CH, which could affect muscle performance.These results suggest that dmDys is more sensitive to CH due to reduced muscle function and hypoxic stress response. Overall design: Adults wild type and dystrophic flies (3-5 days old) were exposed to hypobaric hypoxia for two weeks during the summer expedition to Mount McKinley, Alaska (6194 MASL). Another set of wild types and dystrophic flies were exposed to normobaric hypoxia according to the table I obtained during the climbing expedition. During the expedition, the flies were maintained in vials with regular molasses and covered by thermo isolation to avoid low temperature, keeping the temperature at 25C. The experiment performed in the laboratory also used vials with regular molasses and at 25C. Table I. Expedition log book for mount McKinley ascent. Information obtained during the ascent and summit of Mount McKinley, June 1st to June 16th of 2007. The oxygen pressure (PO2) was calculated from the barometric pressure. GNB means go and back from the mentioned point. DAY LOCATION ALTITUDE m PO2 mmHg (%) 1 Base Camp 2200 123.6 (16.3%) 2 Base Camp 2200 123.6 (16.3%) 3 Base Camp 2200 123.6 (16.3%) 4 Ski Hill 2400 120.7 (15.9%) 5 Kahiltna Pass 2950 113.0 (14.9%) 6 Motorcycle Hill 3350 107.7 (14.2%) 7 Motorcycle Hill 3350 107.7 (14.2%) 8 GNB from Motorcycle 4150 (5 hours) 97.7 (12.9%) 9 Medical Camp 4350 95.3 (12.5%) 10 GNB from Medical Camp 4150 (5 hours) 97.7 (12.9%) 11 Medical Camp 4350 95.3 (12.5%) 12 GNB from Medical Camp 4900 89.0 (11.7%) 13 Medical Camp 4350 95.3 (12.5%) 14 High Camp 5250 85.1 (11.2%) 15 Summit 6194 (0.3 hours) 75.4 (9.9%) 16 High Camp 5250 85.1 (11.2%)
Project description:Background: The potential molecular mechanisms underlying acute adaptation and chronic remodeling of cardiac structure and function in response to high altitude are not yet fully understood. This study aims to investigate changes in the crotonylproteome in the hearts of mice exposed to high altitude at different time points. Methods: The hearts were obtained from mice living at the lowland (500 meters above the sea level, Control), and 3- (D3), 10- (D10) and 30-days (D30) after arriving at plateau (3600 meters above the sea level). Then, a high-resolution mass spectrometry-based, quantitative crotonyllysine proteomics approach was performed to identify the changes in crotonylproteome. Results: We totally identified approximately 13,731 crotonyllysine sites, among which 11,140 were quantified. Furthermore, 1247 differentially expressed (DE) crotonyllysine sites on 764 proteins in 46 pathways were defined by using a stepwise pipeline. Then, 90 crotonylosites from 88 crotonyloproteins with increased crotonylosite abundance and 185 crotonylosites from 141 crotonyloproteins with decreased crotonylosite abundance in the hearts of D3 group were identified, 353 hypercrotonylosites from 274 hypercrotonyloproteins and 118 hypocrotonylosites from 95 hypocrotonyloproteins in the hearts of D10 group were identified, and 958 hypercrotonylosites from 638 hypercrotonyloproteins and 77 hypocrotonylosites from 63 hypocrotonyloproteins were identified in the hearts of D30 group when compared to that in control groups, respectively (>1.3-fold change, P < 0.05), while which occurs largely independently of protein abundance in the same proteins, suggesting a gradually increased crotonylation abundance with the time of exposure to high altitude. Interestingly, the functional enrichment analysis found that most of these significantly changed crotonylated proteins were enriched in the regulation of metabolism and cardiac muscle functions, indicating that these enriched biological processes may be involved in the acute adaptation and chronic remodeling of cardiac function and structure changes in response to high altitude. Conclusion: Our study uncovers some crotonylation-affected processes and pathways in the hearts response to high-altitude exposure, giving novel insights into molecular processes of cardiac function and structure changes at high altitude.
Project description:For individuals migrating to or residing permanently at high-altitude regions, environmental hypobaric hypoxia is a primary challenge which induces several physiological or pathological responses. It is well documented that human beings adapt to hypobaric hypoxia via some protective mechanisms, such as erythropoiesis and overproduction of hemoglobin, however little is known on the changes of plasma proteome profiles in accommodation to high-altitude hypobaric hypoxia. In the present study, we investigated differential plasma proteomes of high altitude natives and lowland normal controls by a TMT-based proteomic approach. A total of 818 proteins were identified, of which 137 were differentially altered. Bioinformatics (including GO, KEGG, protein-protein interactions, etc.) analysis revealed the dysregulated proteins were primarily involved in complement and coagulation cascades, anti-oxidative stress and glycolysis. Validations via magnetic Luminex® Assays and ELISA demonstrated that CCL18, C9, PF4, MPO and S100A9 notably up-regulated, and HRG and F11 down-regulated in high altitude natives compared with lowland controls, which were consistent with the proteomic results. Our findings highlight the roles of complement and coagulation cascades, anti-oxidative stress and glycolysis in acclimatization to hypobaric hypoxia and provide a foundation for developing potential diagnostic or/and therapeutic biomarkers for high altitude hypobaric hypoxia-induced diseases.
2019-03-27 | PXD012221 | Pride
Project description:Gut microbiota influence high altitude pulmonary edema
Project description:The altitude gradient limits the growth and distribution of alpine plants.Alpine plants have developed strategies to survive the extremely cold conditions prevailing at high altitudes; however, the mechanism underlying the evolution of these strategies remains unknown. The alpine plant Potentilla saundersiana is widespread in the Northwestern Tibetan Plateau. In this study, we conducted a comparative proteomics analysis to investigate the dynamic patterns of protein expression of P. saundersiana located at five different altitudes. We detected and functionally characterized 118 differentially expressed proteins. Our study confirmed that increasing levels of antioxidant proteins, and their respective activities, and accumulation of primary metabolites, such as proline and sugar, confer tolerance to the alpine environment in P. saundersiana. Proteins species associated with the epigenetic regulation of DNA stability and post-translational protein degradation were also involved in this process. Furthermore, our results showed that P. saundersiana modulated the root architecture and leaf phenotype to enhance adaptation to alpine environmental stress through mechanisms that involved hormone synthesis and signal transduction, particularly the cross-talk between auxin and strictosidine. Based on these findings, we conclude that P. saundersiana uses multiple strategies to adapt to the high-altitude environment of the Northwestern Tibetan Plateau.
Project description:Recurrent venous thromboembolism (VTE) occurs infrequently following a provoked event but occurs in up to 30% of individuals following an initial unprovoked event. We studied 134 patients with VTE separated into 3 groups: (1) âlow-riskâ patients had â¥1 provoked VTE; (2) âmoderate-riskâ patients had no more than 1 unprovoked VTE; (3) âhigh-riskâ patients had â¥2 unprovoked VTE. 44 individuals with no history of VTE were enrolled as healthy controls. Consented individuals were enrolled at 4 medical centers in the US. Total RNA from whole blood was isolated and hybridized to Illumina HT-12 V4 Beadchips to assay whole genome expression. Using class prediction analysis, we distinguished high-risk patients from healthy controls with good receiver operating curve characteristics (AUC=0.88). We also distinguished high-risk from low-risk individuals, moderate-risk individuals from healthy controls, and low-risk individuals from healthy controls with AUCâs of 0.72, 0.77 and 0.72, respectively. Using differential expression analysis, we identified genes relevant to coagulation, immune response and vascular biology, such as SELP and CD46, which were differentially expressed in at least two comparisons. Neither approach distinguished the moderate-risk patients from the high-risk or low-risk groups. Gene expression profiles may provide insights into biological mechanisms associated with patients at risk for recurrent VTE. Prospective studies are needed to validate these findings. This study includes a total of 218 samples/individuals (in 5 groups; APS, high-risk VTE, moderate-risk VTE, low-risk VTE and healthy-controls). Samples in which the percent of probes present was 15% or less (n=51) were excluded leaving 167 samples. The data for these 167 samples were normalized together. However, this record represents the 132 individual samples in the following groups; high-risk (n=40); moderate-risk (n=33); low-risk (n=34); and healthy controls (n=25). The 35 samples in APS group are represented in GSE48001.
Project description:We present a comparison of four reference-based mapping methods for mapping non-human primate data to a human reference sequence. We utilize TopHat2 and GSNAP for mapping to the human genome, and Bowtie2 and Stampy for mapping to the human genome and transcriptome for a total of six mapping approaches Comparison of reference-based mapping methods for 12 yellow baboons