Arabidopsis AtbHLH112 protein binds to the G-box and a novel motif GCG-box to regulate gene expression in response to abiotic stress
Ontology highlight
ABSTRACT: Plant basic helix-loop-helix (bHLH) proteins play essential roles in physiological and developmental processes and are also involved in abiotic stresses. However, their exact roles in abiotic stress are still not fully understood, and most of them have not been functionally characterised. In the present study, we characterised the functional role of AtbHLH112 in response to abiotic stress. A WRKY gene, AtWRKY66, can regulate the expression of the AtbHLH112 via binding to W-box motifs present in its promoter. AtbHLH112 is a nuclear-localised protein, and its nuclear localisation is increased upon exposure to NaCl, mannitol and ABA. In addition to binding to the G-box motif, AtbHLH112 is found to bind to a novel motif M-bM-^@M-^\GGGCCGGTCM-bM-^@M-^] (named the GCG-box) to regulate gene expression. Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with tolerance to salt and drought. AtbHLH112 can confer stress tolerance via enhanced expression of POD and SOD genes to improve ROS scavenging ability and via upregulated expression of P5CS genes and decreased expression of P5CDH and PRODH genes to improve proline levels. Our data suggested that AtbHLH112 regulates the expression of genes via binding to the G-box and the GCG-box to improve stress-related pathways, such as ROS scavenging and proline biosynthesis. Differentially expression genes of AtbHLH112-overexpression plants and mutant (SALK_033618C) plants of Arabidopsis thaliana were measured under salt stressed and normal condition for 3 hours, respectively. Three independent experiments were performed at each treatment using different plants for each experiment.
Project description:Plant basic helix-loop-helix (bHLH) transcription factors are involved in physiological and developmental processes, and also play essential roles in abiotic stresses. However, their exact roles in abiotic stress are still need to be elucidated, and most of bHLHs have not been functionally characterized. In the present study, we characterized the functional role of AtbHLH112 in response to abiotic stresses. AtbHLH112 is a nuclear-localized protein, and its nuclear-localization is induced by salt, drought and ABA. Besides binding to E-box motif, AtbHLH112 is found to bind to a novel motif with the sequence M-bM-^@M-^\GG[GT]CC[GT][GA][TA]CM-bM-^@M-^] (GCG-box), and the binding affinity is induced by salt and ABA. Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with salt and drought tolerance. AtbHLH112 mediates stress tolerance by upregulating the expression of P5CS genes and decreasing the expression of P5CDH and PRODH genes to increase proline levels, and via enhancing the expression of POD and SOD genes to improve ROS scavenging ability. All data together suggested that AtbHLH112 regulates the expression of genes through binding to GCG-box and E-box to mediate the physiological stress responses, including proline biosynthesis and ROS scavenging pathways to enhance stress tolerance. Differentially expression genes of AtbHLH112-overexpression plants, mutant (SALK_033618C) plants and wild type of Columbia Arabidopsis thaliana were measured under salt stressed and normal condition for 3 hours, respectively. Three independent experiments were performed at each treatment using different plants for each experiment.
Project description:In the current report, we report that ThbZIP1 is a direct target gene of the ThABF1 transcription factor. There are three ABRE motifs in the promoter of ThbZIP1, Yeast one-hybrid (Y1H) assays showed that a ABF protein, ThABF1, specifically binds to the ABRE motifs. The interaction between ThABF1 and the promoter of ThbZIP1 was further confirmed by transient expression assays in tobacco leaves. Chromatin Immunoprecipitation (ChIP) results suggested that binding of ThABF1 to ABRE motifs in the promoter of ThbZIP1 occurs in vivo in Tamarix hispida to regulate the expression of ThbZIP1. Moreover, ThABF1 and ThbZIP1 share similar expression patterns in response to salt, drought, ABA, methyl viologen (MV) and cold stress. Microarray analyses results showed there were 1,662 and 1,609 genes that were significantly upregulated or downregulated, respectively, under ABA stress conditions. ThbZIP1 regulated the genes via binding to the C-, G- or A-box motifs in their promoter sequences. Based on these data, the results suggested a regulatory network model mediated by ThbZIP1, under abiotic stress conditions, ThABF1 regulates the expression of ThbZIP1, and the activated ThbZIP1 binds to bZIP recognition sequences or other motifs to regulate the expression of genes containing these motifs in their promoters. Differentially expression genes of ThbZIP1-overexpression plants and wild type of Columbia Arabidopsis thaliana were measured under ABA stressed and normal condition for 3 hours, respectively. Two independent experiments were performed at each treatment using different plants for each experiment.
Project description:Plant basic helix-loop-helix (bHLH) proteins play essential roles in physiological and developmental processes and are also involved in abiotic stresses. However, their exact roles in abiotic stress are still not fully understood, and most of them have not been functionally characterised. In the present study, we characterised the functional role of AtbHLH112 in response to abiotic stress. A WRKY gene, AtWRKY66, can regulate the expression of the AtbHLH112 via binding to W-box motifs present in its promoter. AtbHLH112 is a nuclear-localised protein, and its nuclear localisation is increased upon exposure to NaCl, mannitol and ABA. In addition to binding to the G-box motif, AtbHLH112 is found to bind to a novel motif “GGGCCGGTC” (named the GCG-box) to regulate gene expression. Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with tolerance to salt and drought. AtbHLH112 can confer stress tolerance via enhanced expression of POD and SOD genes to improve ROS scavenging ability and via upregulated expression of P5CS genes and decreased expression of P5CDH and PRODH genes to improve proline levels. Our data suggested that AtbHLH112 regulates the expression of genes via binding to the G-box and the GCG-box to improve stress-related pathways, such as ROS scavenging and proline biosynthesis.
Project description:Environmental stresses influence the growth of plants and the productivity of crops. Salinity is one of the most important abiotic stresses for agricultural crops. PCD is induced by various biotic and abiotic stresses in algae and higher plants, including high salinity treatment. OsPDCD5, an ortholog to mammalian-programmed cell death 5, is up-regulated under low temperature and NaCl treatments. We found that the transgenic rice which constitutively expressed anti-OsPDCD5 increased salt stress tolerance in unique ways. By using the Rice Genome Microarray, we identi?ed target genes that were regulated in transgenic rice plants by anti-OsPDCD5. Leaf tissues of 2-week-old transgenic and nontransgenic seedlings (10 plants each) before 200mM NaCl treatment, 20mins and 3 hours after 200mM NaCl treatment, respectively, were selected.
Project description:The objective of our study was to search for survival biomarkers (SB) and treatment response monitoring biomarkers (TRMB) in the urinary proteome of dogs with renal disease secondardy to canine leishmaniosis (CanL),
Project description:Plant basic helix-loop-helix (bHLH) transcription factors are involved in physiological and developmental processes, and also play essential roles in abiotic stresses. However, their exact roles in abiotic stress are still need to be elucidated, and most of bHLHs have not been functionally characterized. In the present study, we characterized the functional role of AtbHLH112 in response to abiotic stresses. AtbHLH112 is a nuclear-localized protein, and its nuclear-localization is induced by salt, drought and ABA. Besides binding to E-box motif, AtbHLH112 is found to bind to a novel motif with the sequence “GG[GT]CC[GT][GA][TA]C” (GCG-box), and the binding affinity is induced by salt and ABA. Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with salt and drought tolerance. AtbHLH112 mediates stress tolerance by upregulating the expression of P5CS genes and decreasing the expression of P5CDH and PRODH genes to increase proline levels, and via enhancing the expression of POD and SOD genes to improve ROS scavenging ability. All data together suggested that AtbHLH112 regulates the expression of genes through binding to GCG-box and E-box to mediate the physiological stress responses, including proline biosynthesis and ROS scavenging pathways to enhance stress tolerance.
Project description:Generation of haploid gametes in vitro can potentially address gamete failure-based infertility.This study reports complete in vitro meiosis from murine ESC-derived PGCLCs resulting in the formation of male spermatid-like cells (SLCs) capable of producing viable fertile offspring via intracytoplasmic sperm injection (ICSI).Our findings provide the basis for generation of haploid spermatids in vitro in human, the generation of transgenic animals, and the use of this system to investigate mechanisms of meiosis. We used microarrays to compare gene expression profiles of in vivo and in vitro derived PGC cells and round spermatids. We collected E12.5 male fatal PGCs, PGCLC in vitro, round spermatids and spermatids like cells produced in vitro, each sample has 3 replications.
Project description:Major advances have been made to develop an automated universal 384-well plate sample preparation platform with high reproducibility and adaptability for extraction of proteins from cells within a culture plate. An in-solution digest strategy is employed to generate peptides from the extracted proteins for LC-MS analysis in the 384-well plate. Method evaluation utilized HeLa cells cultured in the 384-well plate ranging from 500 – 10,000 cells. Digestion efficiency was excellent in comparison to the commercial digest peptides standard with minimal sample loss while improving sample preparation throughput by 20 – 40 fold. Analysis of six human cell types, which included two primary cell samples identified and quantified approximately 4,000 proteins for each sample in a single LC-MS/MS injection with as little as 100 – 10,000 cells depending on cell type demonstrating universality of the platform. Implementation of the comprehensive 384-well format protocol for processing cells to clean digested peptides enables large-scale biomarker validation and compound screening through proteomic analysis.
Project description:The regulation of host defense against influenza A viruses (IAVs) infection has attracted much attention, especially for type I interferon (IFN)-mediated innate response. Here we revealed that miR-93 expression was significantly downregulated in Alveolar epithelial type II cells (AT2) upon IAVs infection through RIG-I/JNK pathway. Inhibition of miR-93 was found to suppress host antiviral innate response by facilitating type I IFN effector signaling, and JAK1 was identified to be directly targeted by miR-93. Importantly, in vivo administration of miR-93 antagomiR significantly inhibited miR-93 expression and markedly suppressed IAVs infection, which in turn prevented the death of IAVs infected mice. Hence, the inducible downregulation of miR-93 suppress IAVs infection by upregulation IFN-JAK-STAT effector pathway, and in vivo inhibition of miR-93 bears considerable therapeutic potential for suppressing IAVs infection. The miRNA profiling in mice lung was measured at 24 and 36 hours after gave each mouse 50µl of influenza A (50 µl of 10-6 TCID50/µl) via retropharyngeal instillation. Three mice were performed at each time (24 or 36 hours) and RNA from different donors was mixed before determination.
Project description:Methyl ketone production by P. putida with A. thaliana and switchgrass hydrolysates obtained by dilute acid pretreatment led to the identification of plant-derived amino acids, rather than mono-aromatics, as key stimulative components of these hydrolysates. Shotgun proteomics indicated that the amino acids had a specific inductive effect on proteins involved in fatty acid biosynthesis, leading to a 9-fold increase in methyl ketone titer when amending glucose-containing minimal medium with a defined set of amino acids.