Gene profiling of mouse liver NK and NKT cell subsets
Ontology highlight
ABSTRACT: This study shows that liver Eomes- NK cells are not precursors of classical Eomes+ NK cells but rather constitute a distinct lineage of innate lymphoid cells. Gene profile analyses show that Eomes- NK cells share part of their transcriptional program with NKT cells that includes genes involved in liver homing, NK cell receptors, and several cytokines and cytokine receptors. Eomes- NK cells, Eomes+ Nk cells and NKT cells were sorted by flow cytometry from Eomes-GFP reporter mice. Total RNA was extracted and hybridized to Affymetrix microarrays.
Project description:This study shows that liver Eomes- NK cells are not precursors of classical Eomes+ NK cells but rather constitute a distinct lineage of innate lymphoid cells. Gene profile analyses show that Eomes- NK cells share part of their transcriptional program with NKT cells that includes genes involved in liver homing, NK cell receptors, and several cytokines and cytokine receptors.
Project description:Semi-invariant natural killer T (NKT) cells are thymus-derived innate lymphocytes that modulate microbial and tumour immunity as well as autoimmune diseases. These immunoregulatory properties of NKT cells are acquired during their development. Much has been learnt regarding the molecular and cellular cues that promote NKT cell development, yet how these cells are maintained in the thymus and the periphery and how they acquire functional competence are incompletely understood. We found that IL-15 induced several Bcl-2 family survival factors in thymic and splenic NKT cells in vitro. Yet, IL15-mediated thymic and peripheral NKT cell survival critically depended on Bcl-xL expression. Additionally, IL-15 regulated thymic developmental stage 2 (ST2) to ST3 lineage progression and terminal NKT cell differentiation. Global gene expression analyses and validation revealed that IL-15 regulated Tbx21 (T-bet) expression in thymic ST3 NKT cells. The loss of IL15-dependent T-bet expression resulted in poor expression of IFN-γ and several NK cell receptors in NKT cells. Taken together, our findings reveal a critical role for IL-15 in NKT cell survival, which is mediated by Bcl-xL, and effector differentiation, which is regulated by T-bet. Gene expression was measured in NKT cells sorted from pooled thymi of wild-type (3 replicates) or IL-15 deficient (2 replicates) mice.
Project description:Invariant Natural killer T (iNKT) cells are a separate lineage of T lymphocytes with innate effector functions. They express an invariant TCR specific for lipids presented by CD1d and their development and effector differentiation rely on a unique gene expression program. We asked whether this program includes microRNAs, small non-coding RNAs that regulate gene expression posttranscriptionally and play key role in the control of cellular differentiation programs. We identified a miRNA profile specific for iNKT cells, which exhibits features of activated/effector T lymphocytes. In this experiment we compared microRNAs of NKT cells versus those of conventional T lymphocytes, both extracted from wild type mouse thymus. To produce the populations we enriched mature thymocytes and then sorted NKT cells and conventional T cells (from one sorting we obtain one â??NKTâ?? sample and one â??Tâ?? sample). We performed the experiment in triplicate; the sample NKT 1 was sorted the same day of the sample T 1, NKT 2 with T 2, NKT 3 with T 3. We used a common reference approach for the 6 samples; as a common reference we produced RNA from total thymocytes, without the enrichment for mature cells and without the sorting; we pooled thymocytes derived from all the thymi used in the study. The aim of the experiment was to demonstrate that NKT cells have a microRNA profile different from that of conventional T cells.
Project description:Natural killer (NKT) T cells exhibit tissue distribution, surface phenotype, and functional responses that are strikingly different from those of conventional T cells. The transcription factor PLZF is responsible for most of these properties, as its ectopic expression in conventional T cells is sufficient to confer to them an NKT-like phenotype. The molecular program downstream of PLZF, however, is largely unexplored. Here we report that PLZF regulates the expression of a surprisingly small set of genes, many with known immune functions. This includes several established components of the NKT cell developmental program. Transcriptional program downstream of PLZF in gammadelta NKT cells was analyzed by comparing wt, heterozygous and PLZF-deficient gammadelta NKT cells
Project description:We compared splenic Va14i NKT cells from C57BL/6 control mice and from mice injected 4 weeks earlier intravenously with 4ug/mouse of the iNKT cell antigen alpha-galactosylceramide (aGalCer). These mice were either left unstimulated or were stimulated with 1ug/mouse aGalCer i.v.. All mice were female and 8 weeks of age at the beginning of the experiment. Va14i NKT cells were enriched via magnetic selection and cell sorted for TCRb+ CD1d/aGalCer-tetramer+. Total RNA were prepared using a Qiagen RNeasy mini kit. IVT probe generation and hybridization to Affymetrix Mouse Genome 430 2.0 arrays was carried out by the Veterans Medical Research Foundation GeneChipTM Microarray located at UCSD. Group 1 (Ctr_unstim) = iNKT cells from C57BL/6 control mice and left unstimulated / Group 2 (Ctr_stim) = iNKT cells from C57BL/6 control mice and injected 1h before purification with 1ug aGalCer i.v. / Group 3 (Pre_unstim) = iNKT cells from C57BL/6 mice injected 4weeks earlier with 4ug aGalCer i.v. and left unstimulated / Group 4 (Pre_stim) = iNKT cells from C57BL/6 mice injected 4weeks earlier with 4ug aGalCer i.v. and injected 1h before purification with 1ug aGalCer i.v. / Sample were prepared in duplicates in two independent experiments.
Project description:We sought to identify genes regulated by the transcription factor Th-POK (Zbtb7b) in liver Va14i NKT cells, by RNA microarray analysis of global gene expression in Va14i NKT cells from mice homozygous for the Th-POK-inactivating hd point mutation as compared with the same cell population isolated from heterozygous or wild-type age-matched mice. Two sample set pairs of hd/hd and either hd/+ or +/+ age-matched Va14i NKT cells were prepared via magnetic selection and cell sorting, and total RNA prepared using a Qiagen Rneasy mini kit. IVT probe generation and hybridization to Affymetrix Mouse Genome 430 2.0 arrays was carried out by the Veterans Medical Research Foundation GeneChipTM Microarray located at UCSD.
Project description:The goal of this study was to understand the transcriptional differences between UTX/JMJD3 DKO NKT precursors (P1) and WT litter mater controls. Two female and one male sample for each is included. 6 samples, 3 WT(2F, 1M), 3 DKO (2F, 1M)
Project description:MAIT cells (MAITs) represent an abundant T lymphocyte subset with unique specificity for microbial metabolites presented by the MHC-1b molecule, MR1. MAIT conservation along evolution indicates important, non-redundant functions, but their low frequency in mice has hampered their detailed characterization. Here, we performed a transcriptomic analysis of murine MAITs in comparison with NKT subsets and with mainstream T cells in spleen and peripheral organs of B6-MAIT/CAST mice expressing a Rorc-GFP transgene. MAIT and NKT cells have been FACS-sorted after tetramer staining (MR1:5-OP-RU Tet+ for MAIT, CD1d:PBS57Tet+ for NKT), and 1/17 subsetting based on the expression of Rorc.
Project description:We report the application of single-molecule-based sequencing technology for mapping the Egr2 transcriptional program in developing thymic NKT. We found that Egr2 controls the induction of genes required for NKT development. Examination of developing NKT cells and thymocytes receiving a strong TCR signal in vivo by injecting 500ug anti-TCRb antibody.
Project description:Semi-invariant natural killer T (NKT) cells are thymus-derived innate lymphocytes that modulate microbial and tumour immunity as well as autoimmune diseases. These immunoregulatory properties of NKT cells are acquired during their development. Much has been learnt regarding the molecular and cellular cues that promote NKT cell development, yet how these cells are maintained in the thymus and the periphery and how they acquire functional competence are incompletely understood. We found that IL-15 induced several Bcl-2 family survival factors in thymic and splenic NKT cells in vitro. Yet, IL15-mediated thymic and peripheral NKT cell survival critically depended on Bcl-xL expression. Additionally, IL-15 regulated thymic developmental stage 2 (ST2) to ST3 lineage progression and terminal NKT cell differentiation. Global gene expression analyses and validation revealed that IL-15 regulated Tbx21 (T-bet) expression in thymic ST3 NKT cells. The loss of IL15-dependent T-bet expression resulted in poor expression of IFN-γ and several NK cell receptors in NKT cells. Taken together, our findings reveal a critical role for IL-15 in NKT cell survival, which is mediated by Bcl-xL, and effector differentiation, which is regulated by T-bet.