Integrated analyses of DNA methylation and hydroxymethylation reveal tumor suppressive roles of ECM1, ATF5 and EOMES in human hepatocellular carcinoma
Ontology highlight
ABSTRACT: The newly discovered 5-hydroxymethylcytosine (5hmC) may complicate previous observations of abnormal cytosine methylation statuses used for the identification of new tumor suppressor gene candidates relevant to human hepatocarcinogenesis. The simultaneous detection of 5mC and 5hmC will stimulate the discovery of aberrantly methylated genes with increased accuracy in human hepatocellular carcinoma (HCC). Here, we performed a newly developed single-base high-throughput sequencing approach (hydroxymethylation and methylation Sensitive Tag sequencing, HMST-seq) to synchronously measure these two modifications in HCC samples. After identifying the differentially methylated and hydroxymethylated genes in HCC, we integrated the DNA copy-number alterations as determined using array-based comparative genomic hybridization (aCGH) data with gene expression to identify genes potentially silenced by promoter hypermethylation. As a result, we report a high enrichment of genes with epigenetic aberrations in cancer signaling pathways. Six genes were selected as tumor suppressor gene (TSG) candidates, among which, ECM1, ATF5 and EOMES were confirmed to have potential anti-cancer function via siRNA experiments. To fully examine 5mC and 5hmC status in HCC, we used a newly developed single-base high-throughput sequencing approach (hydroxymethylation and methylation sensitive tag sequencing, HMST-seq) to synchronously measure these two modifications in HCC samples and their adjacent non-cancerous liver tissues (non-HCCs).
Project description:5-methylcytosine (5-mC) can be oxidized to 5-hydroxymethylcytosine (5-hmC). Genome-wide profiling of 5-hmC thus far indicated 5-hmC may not only be an intermediate form of DNA demethylation but could also constitute an epigenetic mark per se. We describe a cost-effective and selective method to detect both the hydroxymethylation and methylation status of cytosines in more than 1.8 million MspI sites in the human genome. This method involves the selective glucosylation of 5-hmC residues, short-sequence tag generation and high-throughput sequencing. We tested this method by screening H9 human embryonic stem cells and their differentiated embroid body cells, and found that differential hydroxymethylation preferentially occur in bivalent genes during cellular differentiation. Especially, our results support hydroxymethylation can regulate key transcription regulators with bivalent marks through demethylation and affect cellular decision on choosing active or inactive state of these genes upon cellular differentiation. We developed a cost-effective and selective method to detect both the hydroxymethylation and methylation status of cytosines in more than 1.8 million MspI sites in the human genome. In this method, we took advantage of the differential enzymatic sensitivities of the isoschizomers MspI and HpaII. HpaII cleaves only a completely unmodified site, any modification at either cytosine blocks the cleavage, while MspI recognizes and cleaves both 5-mC and 5-hmC, but not the newly discovered 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). Furthermore, beta-glucosyltransferase (beta-GT) can transfer a glucose to the hydroxyl group of 5-hmC and generate beta-glucosyl-5-hydroxymethylcytosine (5-ghmC) that blocks MspI digestion. Thus, either by combining beta-GT treatment with MspI digestion or simply applying MspI/HpaII digestion, short sequence tags generated can be used for inferring hydroxymethylation or methylation status in around 1.8 million cytosine sites in the human genome. We tested this method by screening H9 human embryonic stem cells and their differentiated embroid body cells.
Project description:The newly discovered 5-hydroxymethylcytosine (5hmC) may complicate previous observations of abnormal cytosine methylation statuses used for the identification of new tumor suppressor gene candidates relevant to human hepatocarcinogenesis. The simultaneous detection of 5mC and 5hmC will stimulate the discovery of aberrantly methylated genes with increased accuracy in human hepatocellular carcinoma (HCC). Here, we performed a newly developed single-base high-throughput sequencing approach (hydroxymethylation and methylation Sensitive Tag sequencing, HMST-seq) to synchronously measure these two modifications in HCC samples. After identifying the differentially methylated and hydroxymethylated genes in HCC, we integrated the DNA copy-number alterations as determined using array-based comparative genomic hybridization (aCGH) data with gene expression to identify genes potentially silenced by promoter hypermethylation. As a result, we report a high enrichment of genes with epigenetic aberrations in cancer signaling pathways. Six genes were selected as tumor suppressor gene (TSG) candidates, among which, ECM1, ATF5 and EOMES were confirmed to have potential anti-cancer function via siRNA experiments.
Project description:We present here a novel approach called Reduced Representation 5-Hydroxymethylcytosine Profiling (RRHP), which exploits ?-glucosyltransferase (?-GT) to inhibit restriction digestion at adapters ligated to a genomic library, such that only fragments presenting glucosylated 5hmC residues at adapter junctions will be amplified and sequenced. This assay profiles 5hmC sites with single-base resolution in a strand-specific manner. The absence of harsh chemical conversion steps allows for sequencing of native DNA with less inputs, enhancing both sequencing quality and mapping efficiency. Most importantly, the method proves highly reproducible and is a positive display method, sensitive enough to interrogate 5hmC sites with low abundance. When combined with existing RRBS data, it allows simultaneous comparison of 5mC and 5hmC at specific site. developing a new assay for genomic profiling of 5hmC
Project description:Epigenetic pathways that regulate DNA methylation and chromatin modifications are frequently found to be dysregulated in human cancers. The TET methylcytosine dioxygenase 1 (TET1) enzyme is an important regulator of hydroxymethylcytosine (5hmC) in embryonic stem cells, neural progenitors,adult cells and reprogrammed cells. Decreased expression of TET proteins and loss of 5hmC has been reported in many tumors, suggesting a critical role for the maintenance of this epigenetic modification in normal cellular function. However, loss of TET1 function in the etiology of cancer has not been directly investigated. Here, we show that deletion of the Tet1 gene promotes the development of B cell lymphoma. Tet1 is required for maintaining normal levels of 5hmC, preventing aberrant DNA hypermethylation and for the regulation of transcriptional programs involved in B-cell lineage specification, chromosome maintenance, and DNA repair. Progenitor B cells in the absence of Tet1 accumulate DNA damage and whole-exome sequencing of Tet1-deficient tumors revealed a high correlation of mutations with those most frequently found in Non-Hodgkin B cell lymphoma (B-NHL) patients. In addition, we show that the TET1 gene is deleted, hypermethylated and transcriptionally silenced in B-NHL patients. These findings provide the first in vivo evidence of TET1 function as a tumor suppressor of hematopoietic malignancy. We did hydroxymethylation tests for two wild type mice and two Tet1 knockout mice.
Project description:A genome-wide integrated methylome and transcriptome analysis of the early stage of hepatocellular carcinoma development that induced by HBx. The HBV x (HBx) protein, which plays a critical role in the development of HCC, was shown to interact with several epigenetic factors, such as DNMT3A and HDAC1. Most HBx transgenic (TG) mice spontaneously develop HCC at about 1 year of age, providing genetic validation of the oncogenic potential of HBx even in the absence of viral integration and chronic inflammation. Therefore, it would be intriguing to study the regulatory role of HBx in the epigenome and its impact on HCC development. We performed a genome-wide analysis to examine the differences in DNA methylation patterns and RNA transcriptions between cancer and normal liver cells. High-throughput sequencing analysis of MIRA (methylated CpG island recovery assay) and mRNA at 3 mouth old age mouse liver
Project description:Background: 5-hydroxymethylcytosine (5-hmC) is a recently discovered epigenetic modification that is altered in cancers. Genome wide assays for 5-hmC determination are needed as many of the techniques commonly used to assay 5-methylcytosine (5-mC), including conventional methyl-sensitive restriction digest and bisulfite sequencing, are incapable of distinguishing between 5-mC and 5-hmC. Results: Glycosylation of 5-hmC residues by beta-Glucosyl Transferase (beta-GT) can make CCGG residues insensitive to digestion by MspI. We used this premise to modify the HELP-tagging assay to identify both 5-mC and 5-hmC loci in the genome. Comparison of sequencing libraries after HpaII, MspI and MspI+ beta-GT conversion resulted in locus specific 5-mC and 5-hmC determination. A custom bioinformatics pipeline was created to identify 5-hmC sites that were validated at global level by LS-MS and the locus specific level by qRT-PCR of 5-hmC pulldown DNA. Hydroxymethylation at both promoter and intragenic locations correlated positively with gene expression. Analysis of pancreatic cancer samples revealed striking redistribution of 5-hmC sites in cancer cells and demonstrated enrichment of this modification at many oncogenic promoters such as GATA6. Conclusions: The HELP-GT assay allows a high resolution, simultaneous determination of 5-hmC and 5-mC loci from small amounts of DNA with the utilisation of modest sequencing resources. Redistribution of 5-hmC seen in cancer highlights the importance of examining this modification in conjugation with conventional methylome analysis. We did methylation and hydroxymethylation tests for one control and two pancreatic cancer cases
Project description:5-hydroxymethylcytosine (5-hmC) is a newly discovered modified form of cytosine that has been suspected to be an important epigenetic modification in neurodevelopment. While DNA methylation dynamics have already been implicated during neurodevelopment, little is known about hydroxymethylation in this process. Here we report DNA hydroxymethylation dynamics during cerebellum development in the human brain. Overall, we find a positive correlation between 5-hmC levels and cerebellum development. Genome-wide profiling reveals that 5-hmC is highly enriched on specific gene regions, including exons and especially the untranslated regions (UTRs), but it is depleted on introns and intergenic regions. Furthermore, we have identified fetus-specific and adult-specific differentially hydroxymethylated regions (DhMRs), most of which overlap with genes and CpG island shores. Surprisingly, during development DhMRs are highly enriched in genes encoding mRNAs that can be regulated by fragile X mental retardation protein (FMRP), some of which are disrupted in autism, as well as in many known autism genes. Our results suggest that 5-hmC-mediated epigenetic regulation may broadly impact the development of the human brain, and its dysregulation could contribute to the molecular pathogenesis of neurodevelopmental disorders. We generated comprehensive genome-wide profiles of 5hmC in human cerebellum.
Project description:4,392 differentially expressed genes were generated by DGE analysis, and 3,074 had good comparability with known gene sequences in existing species. 1,152 differentially expressed sequences were mapped to the reference canonical pathways in the KEGG database, and were assigned to 110 KEGG pathways, 11 pathways less then with the transcriptome database. Differentially expressed genes were classed according to their function, which includes phytohormones, growth and developmental processes, defense, peroxidase and P450-related genes. Pathway analysis also revealed that the principal secondary metabolites in the C. odorata cuttings were phytohormones and flavonoids. Examination of 2 different stage of adventitious root formation
Project description:High-throughput sequencing of small RNAs from Xenopus tropicalis (adult liver, adult skin, oocytes stage I, II, III, IV, V, VI). total RNA, ~18-42 nt RNAs isolated using PAGE, ligation to adapters requires 5' monophosphate and 3' OH Illumina/Solexa sequencing of adult liver, adult skin, oocytes stage I, II, III, IV, V, VI