Compare the difference of gene expression between wild type ESCs and Mll2 Knockdown ESCs
Ontology highlight
ABSTRACT: Mll2 (ALR) is a histone 3 lysine 4 trimethyltransferase to function as gene activation.In our study, we found that Mll2 is vital for proper control of proliferation and lineage differentiation of mouse ESCs, particularly towards the cardiac-specific lineages. We used microarrays to detail the global programme of gene expression to compare the difference after Mll2 knockdown in E14 cell lines. E14 cells were infected with lentiviruses expressing short hairpin RNA (shRNA) for Mll2 for 24 hours, and then puromycin was added at 2mg/ml to select for 5 days. Then collet samples of control and Mll2 knockdown E14 cells for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Haploid cells are amenable for genetic analysis because they contain only one set of chromosomes.Here,we report the derivation of haESCs from androgenetic blastocysts. These cells, which we designated AG-haESCs, express classical ESC markers, are pluripotent, and contribute to various tissues including the germline upon injection into diploid blastocysts. We used microarrays to compare the gene expression levels among androgenetic haploid embryonic stem cell lines(AG-haESC) E14 and male mouse embryonic fibroblasts (MEFs) and identified that most paternally imprinted genes were down-regulated and the maternally imprinted genes were up-regulated. To avoid the influence of diploidized cells on the expression profile, we collected samples from FACS of cells at G1/G0 stage by staining Hochest 33342. We used E14,which was a male embryonic stem cell lines, and MEFs isloated from male individuals as control. Gene expression profiles of all the cell lines were analysed on an Affymetrix GeneChip 430 2.0 array.
Project description:This SuperSeries is composed of the following subset Series: GSE35785: mRNA expression data from AG-haESC, E14 and MEF GSE35786: CGH analysis of AG-haESCs (androgenetic haploid embryonic stem cells) Refer to individual Series
Project description:Haploid cells are amenable for genetic analysis because they contain only one set of chromosomes. Here,we report the derivation of haESCs from monkey parthenogenic blastocysts. These cells, which we designated PG-haESCs (parthenogenic haploid embryonic stem cells), express classical ESC markers, are pluripotent, and can differentiate to different cell lines from all three embryonic germ layers in vivo and in vitro. We used microarrays to compare the gene expression levels among PG-haESC, ICSI-derived ESCs and female monkey somatic fibroblasts. We used ICSI-derived ESCs and somatic fibroblasts isloated from female individuals as control. Gene expression profiles of all the cell lines were analysed on an Affymetrix Rhesus Macaque array.
Project description:Mll2 (ALR) is a histone 3 lysine 4 trimethyltransferase to function as gene activation.In our study, we found that Mll2 is vital for proper control of proliferation and lineage differentiation of mouse ESCs, particularly towards the cardiac-specific lineages. We used microarrays to detail the global programme of gene expression to compare the difference after Mll2 knockdown in E14 cell lines.
Project description:Vector or shRNA was transfected into SMMC-7721 to detect effect of shRNA on gene expression Specific hormone receptor was knocked down by shRNA in hepatocellular carcinoma
Project description:In rice (Oryza sativa L.), the number of panicles, spikelets per panicle and grain weight are important components of grain yield. These characteristics are controlled by quantitative trait loci (QTLs) and are derived from variation inherent in crops.The identification of different yield related QTLs facilitates an understanding of the mechanisms involved in cereal crop yield, and may have utility in improving grain yield in cereal crops. an understanding of the mechanisms involved in cereal crop yield, and may have utility in improving grain yield in cereal crops. In the present study, We cloned and characterized a large-panicle QTL, and confirmed that the newly identified gene OsEBS (enhancing biomass and spikelet number) increased plant height, leaf size and spikelet number per panicle, leading to an average of 37.62% increase in total grain yield per plant. trait loci (QTLs) and are derived from variation inherent in crops. OsEBS-transgenic rice B10201 and B10301 and control Guichao2
Project description:We take the two year old plant for sampling.Use the Affymetrix poplar gene chip to elucidate the gene functions and mechanisms in Populus tomentosa shoot apex and mature xylem. We used microarrays to detail the global programme of gene expression in shoot apex and mature xylem. Populus tomentosa shoot apex and mature xylem were taken for RNA extraction and hybridization on Affymetrix microarrays.CB2009304-C and CB2009304-D from shoot apex, CB2009304-G and CB2009304-H from mature xylem.
Project description:We take the two year old plant for sampling. Use the Affymetrix poplar gene chip to elucidate the gene functions and mechanisms in Populus tomentosa newly formed developing xylem and lignified xylem. We used microarrays to detail the global programme of gene expression in newly formed developing xylem and lignified xylem. Populus tomentosa newly formed developing xylem and lignified xylem were taken for RNA extraction and hybridization on Affymetrix microarrays. CB2009304-A and CB2009304-B from newly formed developing xylem, CB2009304-G and CB2009304-H from lignified xylem.
Project description:To understand the molecular mechanism of drought stress resistance mediated by OsABA8ox3 gene, we checked the genome-wide expression profile changes in the OsABA8ox3 RNAi and WT seedlings using the Affymetrix GeneChip under the normal condition and drought stress. A total of 1436 genes showed greater than 2-fold higher expression levels in both WT and RNAi-9 seedlings after drought stress, and most of them had higher up-regulated folds in RNAi-9 seedlings than that of WT. Gene expressions in the OsABA8ox3 RNAi and WT seedlings under the normal and drought stress conditions.
Project description:The retina is often subjected to tractional forces in a variety of conditions, for instance, pathological myopia, proliferative vitreoretinopathy. As the predominant glial element in the sensory retina, Muller cells are responsible for the homeostatic and metabolic support of retinal neurons and active players in virtually all forms of retinal injury and disease. Besides, Muller cells span the entire retinal thickness, extending from the inner to the outer limiting membranes, with cell bodies located in the inner nuclear layer and lateral processes expanding into the plexiform layers of the tissue. Because of this unique morphology, Muller cells can sense even minute changes in the retinal structure because of the mechanical stretching of their long processes or side branches. Thus, itM-bM-^@M-^Ys reasonable to infer that Muller cells also participate in ocular diseases when the retina is overstretched. In this study, we aim to investigate the whole genome regulation of Muller cells under mechanical stretching, which may help in excluding possible molecular mechanisms that would account for many retinal diseases in which the retina is often subjected to mechanical forces. We used microarrays to identify patterns of gene expression changes induced by cyclic mechanical stretching in Muller cells. Rat Muller cells were seeded onto flexible bottom culture plates and subjected to a cyclic stretching regimen of 15% equibiaxial stretching for 1 and 24 h.Muller cells cultured under the same conditions but with no applied mechanical strain were considered as the unstretched control. At each time points (1 and 24 h), three totally independent experiments (3 stretched samples and 3 control samples) were conducted. Muller cells were selected for RNA extraction and hybridization on Affymetrix microarrays. Stretch (S); Control (C)