Gene expression changes occuring as a result of KLF6 knockdown in murine HCC
Ontology highlight
ABSTRACT: We performed whole genome expression profiling using a murine HCC cell line that was either infected with a virus containing shRNA targeting KLF6 or GFP. 3 sets of infections were performed for both shGFP and shKLF6 samples. RNA was isolated from these samples and subsequently analyzed. Determination of gene expression changes in a murine HCC cell line was performed with 3 sets of infections performed for both shGFP and shKLF6. RNA was isolated from these samples and subsequently analyzed using the Affymetrix Mouse Genome 430 2.0 chip.
Project description:We performed whole genome expression profiling using a murine HCC cell line that was either infected with a virus containing shRNA targeting KLF6 or GFP. 3 sets of infections were performed for both shGFP and shKLF6 samples. RNA was isolated from these samples and subsequently analyzed.
Project description:We sequenced DNA isolated from performing ChIP of full-length KLF6 and an Input sample in an HCC cell line. The goal is to determine KLF6 binding sites in a mouse-derived HCC cell line. Determination of KLF6 binding sites in an HCC cell line using 2 control input libraries and 2 KLF6-ChIP libraries
Project description:Gene-expression profiles of liver and hepatocellular carcinoma induced by diethylnitrosamine (DEN) in KLF6 +/- and wild type KLF6 mice. Inactivation of the KLF6 tumor suppressor is common in HCC due to hepatitis C virus (HCV), consistent with its anti-proliferative activity in HCC-derived cell lines and in hepatocytes of transgenic mice. We have evaluated the impact of KLF6 depletion on human HCC and experimental hepatocarcinogenesis. In patients with surgically resected HCC, those with significantly reduced tumor expression of KLF6 had a significantly decreased survival. We modeled this event in KLF6 +/- mice, which displayed significantly more tumorigenicity than KLF6 +/+ animals in response to the hepatic carcinogen DEN, associated with recapitulation of gene signatures in both surrounding tissue and tumors that are associated with aggressive human HCCs. In DNA microarrays, mdm2 mRNA expression was increased in tumors from KLF6 +/- compared to KLF6 +/+ mice, which was validated by realtime qPCR and Western blot in both human HCC and DEN-induced murine tumors. Moreover, chromosomal immunoprecipitation and co-transfection assays established the P2 intronic promoter of mdm2 as a bona fide transcriptional target repressed by KLF6. Whereas KLF6 over-expression in HCC cell lines led to reduced MDM2 levels and increased p53 protein and transcriptional activity, reduction in KLF6 by siRNA led to increased MDM2 and reduced p53. Our findings indicate that KLF6 deficiency contributes significantly to the carcinogenic milieu in human and murine HCC, and uncover a novel tumor suppressor activity of KLF6 in HCC, by linking its transcriptional repression of MDM2 to stabilization of p53. Keywords: Liver, Hepatocellular carcinoma, Expression array, Exon array, Affymetrix KLF6 +/- mice were previously generated by homologous recombination in which exon 2 was targeted using an 11-kb targeting construct, and replaced with neomycin/lacZ cassette. After selection with neomycin, the ES clones were injected into C57BL/6 mouse blastocysts and implanted into pseudo pregnant females; two lines of KLF6 +/- mice were generated from the resulting chimeric animals (Blood 107;1357, Oncogene 26;4428). Whereas KLF6 -/- mice are embryonic lethal, KLF6 +/- animals had no demonstrable abnormalities in the absence of any stressor. Male KLF6 +/- mice were bred with wild type C57BL/6 to generate mixed litters of KLF6 +/- and KLF6 +/+ animals. Progeny were genotyped using PCR-amplified tail DNA, using primers as previously described (Oncogene 26;4428). Amplified fragments were separated on a 2.5% agarose gel, revealing bands of ~200 bp (wild type KLF6) and ~100 bp (Neo), as expected. At 2 weeks of age, KLF6 +/+ and KLF6 +/- mice were injected intraperitoneally with either a single dose of diethyl nitrosamine (DEN), 5 µg/g body weight in 100 µl of saline, or vehicle alone. Vehicle and DEN-treated mice were maintained on standard chow, and then sacrificed 3, 6 or 9 months later. At the time of sacrifice the animals were weighed, and blood and liver samples were harvested for analysis and tumor quantification.
Project description:Gene-expression profiles of liver and hepatocellular carcinoma induced by diethylnitrosamine (DEN) in KLF6 +/- and wild type KLF6 mice. Inactivation of the KLF6 tumor suppressor is common in HCC due to hepatitis C virus (HCV), consistent with its anti-proliferative activity in HCC-derived cell lines and in hepatocytes of transgenic mice. We have evaluated the impact of KLF6 depletion on human HCC and experimental hepatocarcinogenesis. In patients with surgically resected HCC, those with significantly reduced tumor expression of KLF6 had a significantly decreased survival. We modeled this event in KLF6 +/- mice, which displayed significantly more tumorigenicity than KLF6 +/+ animals in response to the hepatic carcinogen DEN, associated with recapitulation of gene signatures in both surrounding tissue and tumors that are associated with aggressive human HCCs. In DNA microarrays, mdm2 mRNA expression was increased in tumors from KLF6 +/- compared to KLF6 +/+ mice, which was validated by realtime qPCR and Western blot in both human HCC and DEN-induced murine tumors. Moreover, chromosomal immunoprecipitation and co-transfection assays established the P2 intronic promoter of mdm2 as a bona fide transcriptional target repressed by KLF6. Whereas KLF6 over-expression in HCC cell lines led to reduced MDM2 levels and increased p53 protein and transcriptional activity, reduction in KLF6 by siRNA led to increased MDM2 and reduced p53. Our findings indicate that KLF6 deficiency contributes significantly to the carcinogenic milieu in human and murine HCC, and uncover a novel tumor suppressor activity of KLF6 in HCC, by linking its transcriptional repression of MDM2 to stabilization of p53. Keywords: Liver, Hepatocellular carcinoma, Expression array, Exon array, Affymetrix
Project description:We sequenced DNA isolated from performing ChIP of full-length KLF6 and an Input sample in an HCC cell line. The goal is to determine KLF6 binding sites in a mouse-derived HCC cell line.
Project description:We report RNA-Seq data from MPC11 plasmacytoma cell lines transduced with either control hairpins (shGFP) or hairpins targeting the transcriptional elongation factor ELL2. ELL2 has been identified as regulating the alternative splicing and polyadenylation of immunoglobulin pre-mRNA, and is highly expressed by plasma cells but not other B cells. Notably, ELL2 drives the accumulation of transcripts encoding secreted immunoglobulin at the expense of membrane-associated transcripts. This study sought to examine the impact of ELL2 on mRNA processing at the transcriptome level, and found that ELL2 controls the alternative processing of 12% of annotated transcripts in MPC11 cells. Examination of pre-mRNA splicing patterns in either control or ELL2-depleted cells
Project description:MEIS2 has an important role in development and organogenesis, and is implicated in the pathogenesis of human cancer. The molecular basis of MEIS2 action in tumorigenesis is not clear. Here, we show that MEIS2 is highly expressed in human neuroblastoma cell lines and is required for neuroblastoma cell survival and proliferation. Depletion of MEIS2 in neuroblastoma cells leads to M phase arrest and mitotic catastrophe, whereas ectopic expression of MEIS2 markedly enhances neuroblastoma cell proliferation, anchorage-independent growth, and tumorigenicity. Gene expression profiling reveals an essential role of MEIS2 in maintaining the expression of a large number of late cell cycle genes, including those required for DNA replication, G2-M checkpoint control and M phase progression. Importantly, we identify MEIS2 as a transcription activator of the MuvB-BMYB-FOXM1 complex that functions as a master regulator of mitotic gene expression. Further, we show that FOXM1 is a direct target gene of MEIS2 and is required for MEIS2 to upregulate mitotic genes. These findings link a development gene to the control of cell cycle progression and suggest that high MEIS2 expression is a molecular mechanism for high expression of mitotic genes that is commonly observed in cancers of poor prognosis. Affymetrix microarray assays were performed according to the manufacturer's directions on total RNA isolated from three independent samples of BE(2)-C cells infected with lentiviruses expressing either shGFP or shMEIS2-43 for 48 hours.
Project description:We examine the role of Klf6 in oligodendrocyte progenitor cells and determine that Klf6 acts in part through direct regulation of gp130 signaling and nuclear import via importin-α5 (Impα5), a key controller of nuclear trafficking. Examination of Klf6 DNA binding in two different stages of differentiation
Project description:Dysregulated glucose homeostasis and lipid accumulation characterize non-alcoholic fatty liver disease (NAFLD), but underlying mechanisms are obscure. We report here that Krüppel-like factor 6 (KLF6), a ubiquitous transcription factor that promotes adipocyte differentiation, also provokes the metabolic abnormalities of NAFLD. Mice with either hepatocyte-specific knockdown of KLF6 (DeltaHepKlf6) or global KLF6 heterozygosity (Klf6 +/-) have reduced body fat content and improved glucose and insulin tolerance. Mice with KLF6 depletion, compared to wild type mice, are protected from high fat diet-induced steatosis. Three mice with a hepatocyte-specific knockdown of KLF6 (DeltaHepKlf6) on high fat diet and 3 littermate controls on the same diet were sacrificed after 8 weeks of diet. Liver tissue was preserved in RNAlater® (Ambion, Austin, TX). RNA was isolated from liver tissue and homogenized in TRIzol® reagent (Invitrogen, Carlsbad, CA). In order to identify potential KLF6 targets that contributed to changes in glucose- and lipid-metabolism, we performed an Affymetrix Exon1 S.T. Genearray® (Affymetrix, Santa Clara, CA).