Expression analysis of DNMT3A mutant-transduced hematopoetic stem/progenitors
Ontology highlight
ABSTRACT: Despite the impact of DNMT3A mutation in acute myeloid leukemia has been emphasized, the precise molecular mechanisms in leukemogenesis are largely unknown. Here we show that, in murine transplantation experiments, recipients transplanted with DNMT3A mutant-transduced cells exhibit aberrant hematopoietic stem cell (HSC) accumulation. Differentiation-associated genes are down-regulated without accompanying changes in methylation status of their promoter-associated CpG islands in DNMT3A mutant-transduced stem/progenitor cells. DNMT3A mutant also promotes monoblastic transformation in vitro in combination with HOXA9. Molecularly, DNMT3A mutant interacts with polycomb repressive complex 1 (PRC1), leading to transcriptional silencing of PU.1. Suppression of PRC1 impairs aberrant HSC accumulation and monoblastic transformation. Taken together, our results highlight the functional role of DNMT3A mutation, forming the basis for leukemia development. GFP-labeled empty vector, DNMT3A wild-type (WT), R882H-transduced LSK cells derived from transplanted mice were utilized for compared the expression profiles (3 sorted empty vector-transduced LSK cells, 3 sorted DNMT3A WT-transduced LSK cells, and 3 sorted DNMT3A R882H-transduced LSK cells. Total RNA was extracted by TaKaRa NucleoSpin RNA XS according to the manufacturerâs protocol. Amplification and biotin labeling of fragmented cDNA was carried out from 3.67 ng of total RNA by using NuGen Ovation Pico WTA System V2 (NuGEN) and SureTag Complete DNA Labeling Kit (Agilent). Each 2 μg of cDNA were hybridized to the Agilent SurePrint G3 Mouse Gene Expression 8x60K (Agilent) using Gene Expression Hybridization Kit (Agilent). After scanning, the signal intensity for each feature was measured by Agilent Feature Extraction (Agilent).
Project description:Despite the impact of DNMT3A mutation in acute myeloid leukemia has been emphasized, the precise molecular mechanisms in leukemogenesis are largely unknown. Here we show that, in murine transplantation experiments, recipients transplanted with DNMT3A mutant-transduced cells exhibit aberrant hematopoietic stem cell (HSC) accumulation. Differentiation-associated genes are down-regulated without accompanying changes in methylation status of their promoter-associated CpG islands in DNMT3A mutant-transduced stem/progenitor cells. DNMT3A mutant also promotes monoblastic transformation in vitro in combination with HOXA9. Molecularly, DNMT3A mutant interacts with polycomb repressive complex 1 (PRC1), leading to transcriptional silencing of PU.1. Suppression of PRC1 impairs aberrant HSC accumulation and monoblastic transformation. Taken together, our results highlight the functional role of DNMT3A mutation, forming the basis for leukemia development.
Project description:Comparison of Mpl-/- mouse LSK cells, either treated with control (GFP) or Mpl lentivirus. Lineage negative bone marrow cells were isolated and transduced and transplanted into Mpl-/- recipient mice. After transplantation and follow up mice were sacrificed and LSK (lineage negative, Sca-1 positive, cKit positive) cells were isolated by FACS. RNA was isolated using RNeasy Micro Kit (Qiagen GmbH, Hilden, Germany) and RNA was amplified for microarray hybridization using the Nugen Ovation system (Nugen Technologies, AC Bemmel, Netherlands). The resulting material was hybridized to Affymetrix Mouse 430 2.0 arrays. RMA normalization and summarization was performed in R 2.10 using Bioconductor packages. The aim was to show the normalization of Mpl associated gene expression. 3 control (GFP transduced) samples of Mpl -/- mouse LSK cells and 3 treatment (Mpl transduced) samples of Mpl -/- mouse LSK cells.
Project description:Comparison of Mpl-/- mouse LSK cells, either treated with control (GFP) or Mpl lentivirus. Lineage negative bone marrow cells were isolated and transduced and transplanted into Mpl-/- recipient mice. After transplantation and follow up mice were sacrificed and LSK (lineage negative, Sca-1 positive, cKit positive) cells were isolated by FACS. RNA was isolated using RNeasy Micro Kit (Qiagen GmbH, Hilden, Germany) and RNA was amplified for microarray hybridization using the Nugen Ovation system (Nugen Technologies, AC Bemmel, Netherlands). The resulting material was hybridized to Affymetrix Mouse 430 2.0 arrays. RMA normalization and summarization was performed in R 2.10 using Bioconductor packages. The aim was to show the normalization of Mpl associated gene expression.
Project description:DNA methyltransferase 3A (DNMT3A) gene is mutated in various myeloid neoplasms including acute myeloid leukemia (AML), especially at the Arg882 and associated with inferior outcomes. Despite the current progress of functional role of DNMT3A mutations, the molecular pathogenesis of myeloid malignancies remains poorly understood. The mechanisms of AML transformation and functional role of DNMT3A mutations through its target genes in the leukemogenesis remain to be explored. Here we wished to perform the differential gene expression profile in U937 cells over-expressed with DNMT3A-Arg882His/Cys (R882H/C) mutations including DNMT3A-WT and vector. Results: Gene expression profiling analysis revealed aberrant expression of several cell-cycle and apoptosis-related genes in U937 cells transduced with mutant DNMT3A compared to WT- or vector control.
Project description:DNA methyltransferase 3A (DNMT3A) is frequently mutated in hematological cancers; however, the underlying oncogenic mechanism remains elusive. Here, we report that DNMT3A mutational hotspot at Arg882 (DNMT3A R882H) cooperates with NRAS mutation to transform hematopoietic stem/progenitor cells and induce acute leukemia development. Mechanistically, DNMT3A R882H directly binds to and potentiates transactivation of stemness genes critical for leukemogenicity including Meis1, Mn1 and Hoxa gene cluster. DNMT3A R882H induces focal epigenetic alterations, including CpG hypomethylation and concurrent gain of active histone modifications, at cis-regulatory elements such as enhancers to facilitate gene transcription. CRISPR/Cas9-mediated ablation of a putative Meis1 enhancer carrying DNMT3A R882H-induced DNA hypomethylation impairs Meis1 expression. Importantly, DNMT3A R882H-induced gene expression programs can be repressed through Dot1l inhibition, providing an attractive therapeutic strategy for DNMT3A-mutated leukemias. This SuperSeries is composed of the SubSeries listed below.
Project description:DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies. We report that DNMT3A mutational ‘hotspot’ at Arg882 (i.e., DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. Mechanistically, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation. In this dataset, we provided microarray data showing effect of BRD4 inhibitor I-BET151 on gene expression in leukemic stem cells transformed by DNMT3A R882H and NRAS G12D.
Project description:DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational âhotspotâ at Arg882 (DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of âstemnessâ gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity. In this dataset, we provided enhanced Reduced Representation Bisulfite Sequencing (eRRBS) DNA methylome profiling data showing effect of DNMT3A R882H mutation or WT expression on hematopoietic stem/progenitor cells with NRAS G12D co-transduction. eRRBBs DNA methylome analysis of Lin- enriched hematopoietic stem/progenitor cells with retroviral infection of NRAS G12D alone (EV-RAS), DNMT3A R882H with NRAS G12D (RH-RAS) or DNMT3A WT with NRAS G12D (WT-RAS) at day 16 post-transduction.
Project description:DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational âhotspotâ at Arg882 (DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of âstemnessâ gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity. In this dataset, we provided H3K4me1, H3K27ac and H3K79me2 ChIP-seq profiling data showing effect of DNMT3A R882H mutation or WT expression on epigenetic landscapes of hematopoietic stem/progenitor cells with NRAS G12D co-transduction. ChIP-seq analysis of Lin- enriched hematopoietic stem/progenitor cells with retroviral infection of NRAS G12D alone (EV-RAS), DNMT3A R882H with NRAS G12D (RH-RAS) or DNMT3A WT with NRAS G12D (WT-RAS) 3 weeks post-transduction. Antibodies of H3K4me1, H3K27ac and H3K79me2 were used.
Project description:DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational â??hotspotâ?? at Arg882 (i.e., DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of â??stemnessâ?? gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity. In this dataset, we provided microarray data showing effect of R882H-mutated or WT DNMT3A on gene expression among HSPCs with NRAS G12D co-transduction. Microarray analysis of Lin- enriched hematopoietic stem/progenitor cells with retroviral infection of NRAS G12D alone (EV-RAS), DNMT3A R882H with NRAS G12D (RH-RAS) or DNMT3A WT with NRAS G12D (WT-RAS) at day 12 or day 16 post-transduction.
Project description:DNA Methyltransferase 3A (DNMT3A) is frequently mutated in various hematopoietic malignancies; however, the underlying oncogenic mechanisms remain elusive. Here, we report that DNMT3A mutational ‘hotspot’ at Arg882 (DNMT3A-R882H) cooperates with constitutively activated RAS in transforming murine hematopoietic stem/progenitor cells (HSPCs) ex vivo and inducing acute leukemias in vivo. DNMT3A-R882H potentiates aberrant transactivation of ‘stemness’ gene expression programs, notably transcription factors Meis1, Hox-A, Mn1 and Mycn. Mechanistically, R882-mutated DNMT3A directly binds to cis-regulatory elements of these genes and induces focal CpG hypomethylation reminiscent of what was seen in human leukemias bearing DNMT3A R882 mutation. Furthermore, DNMT3A-R882H induced DNA hypomethylation facilitates gene enhancer/promoter activation and recruitment of Dot1l-associated transcription elongation machineries. Inactivation of Dot1l represses DNMT3AR882H-mediated stem cell gene dysregulation and acute leukemogenicity. In this dataset, we provided R882H-mutated DNMT3A, H3K4me1, H3K4me3 and H3K27me3 ChIP-seq profiling data of RH-RAS LSCs, and H3K4me1 ChIP-seq data in HOXA9-MEIS1 LSCs.