Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Matrix Elasticity Does Not Affect Replicative Senescence or DNA Methylation Patterns of Mesenchymal Stem Cells [DNAm profiling]


ABSTRACT: Matrix elasticity influences differentiation of mesenchymal stem cells (MSCs) but it is unclear if these effects are only transient - while the cells reside on the substrate - or if they reflect persistent lineage commitment. In this study, MSCs were continuously culture-expanded in parallel either on polydimethylsiloxane (PDMS) gels of different elasticity or on tissue culture plastic (TCP) to compare impact on replicative senescence, in vitro differentiation, gene expression, and DNA methylation (DNAm) profiles. The maximal number of cumulative population doublings was not affected by matrix elasticity. Differentiation towards adipogenic and osteogenic lineage was increased on soft and rigid biomaterials, respectively - but this propensity was no more evident if cells were transferred to TCP. Global gene expression profiles and DNAm profiles revealed relatively few differences in MSCs cultured on soft or rigid matrices. Furthermore, only moderate DNAm changes were observed upon culture on very soft hydrogels of human platelet lysate (hPL-gel). Our results support the notion that matrix elasticity influences cellular differentiation while the cells are organized on the substrate, but it does not have major impact on cell-intrinsic lineage determination, replicative senescence or DNAm patterns. 20 samples were hybridized to the Illumina Infinium 450k Human Methylation Beadchip

ORGANISM(S): Homo sapiens

SUBMITTER: Wolfgang Wagner 

PROVIDER: E-GEOD-55888 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications


Matrix elasticity guides differentiation of mesenchymal stem cells (MSCs) but it is unclear if these effects are only transient - while the cells reside on the substrate - or if they reflect persistent lineage commitment. In this study, MSCs were continuously culture-expanded in parallel either on tissue culture plastic (TCP) or on polydimethylsiloxane (PDMS) gels of different elasticity to compare impact on replicative senescence, in vitro differentiation, gene expression, and DNA methylation (  ...[more]

Similar Datasets

2014-07-29 | E-GEOD-55867 | biostudies-arrayexpress
2014-07-29 | GSE55867 | GEO
2014-07-29 | GSE55888 | GEO
2013-12-03 | E-GEOD-40799 | biostudies-arrayexpress