Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Loss of nuclear TDP-43 in ALS causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurons [LCM]


ABSTRACT: Aims: Loss of nuclear TDP-43 characterises sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether 1) RNA splicing dysregulation is present in lower motor neurons in ALS and in a motor neuron-like cell model, and 2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Methods: Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurons obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by qRT-PCR and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. Results: We found altered expression of spliceosome components in motor neurons and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43 depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, that were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Conclusion: Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurons, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. RNA was extracted from lower motor neurons obtained by laser capture microdissection from autopsy material from neurologically healthy controls (n=6) and cases of sporadic ALS (n=3) and ALS due to C9ORF72 mutations (n=3).

ORGANISM(S): Homo sapiens

SUBMITTER: Paul Heath 

PROVIDER: E-GEOD-56500 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2014-06-01 | E-GEOD-33855 | biostudies-arrayexpress
2014-06-01 | E-GEOD-56503 | biostudies-arrayexpress
2014-06-01 | GSE33855 | GEO
2014-06-01 | GSE56503 | GEO
2014-06-01 | GSE56500 | GEO
2019-01-01 | GSE122069 | GEO
2012-09-30 | E-GEOD-40649 | biostudies-arrayexpress
2012-09-30 | E-GEOD-40651 | biostudies-arrayexpress
2012-09-30 | E-GEOD-40652 | biostudies-arrayexpress
2024-02-23 | GSE167557 | GEO