Transcriptome profiling of muscle by RNA-Seq reveals significant digital gene expression profiling differences between Angus and Luxi Cattle
Ontology highlight
ABSTRACT: The development of massively parallel sequencing technologies enables the sequencing of total cDNA to identify unigene expression and to discover novel regions of transcription. Here, we report the first use of RNA-Seq to find the digital gene expression profiles (DGEs) associated with the growth and development of muscle in both Chinese Luxi and Angus beef cattle. More than 9,243,921 clean reads were found in samples of muscle tissue. We found 232 DGEs between Luxi cattle and Angus cattle (FDRM-bM-^IM-$0.001 AND |log2Ratio|M-bM-^IM-%1). Among the DGEs, we determined that 147 genes were down-regulated and 85 genes were up-regulated. GO and Pathway analysis were performed to analyze the biological role of the DGEs and determine their contribution to the differences seen in muscle growth and development between local Chinese Luxi cattle and the introduced Angus cattle. This article suggests that RNA-Seq is a useful tool for predicting differences in gene expression between Luxi and Angus beef cattle; moreover, our result provides unprecedented resolution of mRNAs that are expressed across the two breeds. Three Luxi and three Angus cattle that were eighteen months of age were generated by RNA-Seq
Project description:The intramuscular fat (IMF) content of different beef cattle breeds varies greatly, which plays an important role in taste and nutritional value. However, the molecular mechanism of fat metabolism and deposition in beef cattle is still not very clear. In this study, the meat quality traits of Angus cattle and Chinese Simmental cattle were compared, the transcriptome of the longissimus dorsi muscle (LD) between Angus cattle and Chinese Simmental cattle was then analyzed to identify key genes related to fat metabolism and adipogenesis by high-throughput RNA-seq technology. In the current study conducted a comprehensive analysis on the transcriptome of the longissimus dorsi muscle (LD) of Angus and Simmental cattle, and identified differentially expressed genes related to lipid metabolism,which may have a great impact on on the formation of IMF.
Project description:The development of massively parallel sequencing technologies enables the sequencing of total cDNA to identify unigene expression and to discover novel regions of transcription. Here, we report the first use of RNA-Seq to find the digital gene expression profiles (DGEs) associated with the growth and development of muscle in both Chinese Luxi and Angus beef cattle. More than 9,243,921 clean reads were found in samples of muscle tissue. We found 232 DGEs between Luxi cattle and Angus cattle (FDR≤0.001 AND |log2Ratio|≥1). Among the DGEs, we determined that 147 genes were down-regulated and 85 genes were up-regulated. GO and Pathway analysis were performed to analyze the biological role of the DGEs and determine their contribution to the differences seen in muscle growth and development between local Chinese Luxi cattle and the introduced Angus cattle. This article suggests that RNA-Seq is a useful tool for predicting differences in gene expression between Luxi and Angus beef cattle; moreover, our result provides unprecedented resolution of mRNAs that are expressed across the two breeds.
Project description:This study aimed to investigate the heat tolerance and inheritance patterns of leukocyte transcriptomics in F1 hybrid cattle (AN♂ × DR♀) and their parents Red Angus (AN) and Droughtmaster (DR) under heat stress.
Project description:To clarify the mechnism that grass-fed and grain-fed regimens inducing the different characteristics of Wyu Angus cattle, we used high-throughput sequencing and metabolomics analysis to explore differentially expressed genes , differentially expressed miRNAs and lnRNAs, meanwhile constructed importantly regulatory networks.
Project description:To clarify the mechnism that grass-fed and grain-fed regimens inducing the different characteristics of Wyu Angus cattle, we used high-throughput sequencing and metabolomics analysis to explore differentially expressed genes , differentially expressed miRNAs and lnRNAs, meanwhile constructed importantly regulatory networks.
Project description:Here we describe the initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes The custom aCGH chips that interrogated the whole genome CNVs were build for 3 pairs of contemporary parasite-susceptible and resistant Angus.
Project description:We report the breed-dependent differences in the innate immune response of dermal fibroblasts following exposure to lipopolysaccharide (LPS). Skin biopsies were collected from Angus (a beef breed) and Holstein (a dairy breed) animals and isolated fibroblasts were exposed to LPS to investigate differences in gene expression between these two cattle breeds.
Project description:Puberty is a complex physiological event measured by various indicator traits in genetic improvement programs of beef cattle; thus, developing a more complete understanding of the genes and regulatory pathways and networks involved in puberty will provide knowledge to help improve genetic selection strategies. Herein, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to growth and metabolism needed for cattle to achieve puberty (i.e., longissimus dorsi muscle, fat, and liver). These tissues were collected from pre (PRE)- and post (POST)-pubertal Brangus (3/8 Brahman; Bos indicus x 5/8 Angus; Bos taurus) heifers derived from a population of cattle used to identify QTL associated with fertility traits. In order to exploit the power of complementary omics analyses, PRE and POST puberty co-expression gene networks were constructed by combining the results from RNA-Seq, GWAS, and bovine transcription factors. RNA-Seq of 8 tissues among PRE and POST Brangus heifers revealed 1515 differentiallyexpressed and 943 tissue-specific genes within the 17,832 genes confirmed by metrics of RNA-Seq analysis. Combining the results from RNA-Seq and GWAS indentified a total of 25 QTL associated to heifer fertility. The hypothalamus experienced the most notable up-regulation of genes via puberty. Complementary omics procedures revealed 2,450 co-expressed genes across the 8 tissues relative to puberty. The PRE network had 372,861 connections whereas the POST network had 328,357 connections. A sub-network from this process revealed key transcriptional regulators (i.e., PITX2, FOXA1, TSG1D1, DACH2, LHX4, PROP1 and SIX6). Results from multiples sources of omics data will facilitate the design of breeding strategies to improve fertility in Bos indicus-influenced composite cattle. Sixty-one samples from PRE and POST pubertal composite beef heifers were analyzed with RNA-Seq. The transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to metabolism andbody morphometrics needed for cattle to achieve puberty (i.e.,) was characterized. These tissues were collected from pre (PRE)- and post (POST)-pubertal Brangus (3/8 Brahman x 5/8 Angus) heifers derived from a population of cattle used to identify QTL associated with fertility. Total RNA was purified using a Trizol protocol (Invitrogen, Carlsbad, CA). Sequencing libraries were made using TruSeq RNA Sample Preparation kit of Illumina (San Diego, CA).