Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

MicroRNA Directly Enhances Mitochondrial Translation during Muscle Differentiation.


ABSTRACT: MicroRNAs are well known to mediate translational repression and mRNA degradation in the cytoplasm. Various microRNAs have also been detected in membrane-compartmentalized organelles, but the functional significance has remained elusive. Here we report that miR-1, a microRNA specifically induced during myogenesis, efficiently enters the mitochondria where it unexpectedly stimulates, rather than represses, the translation of specific mitochondrial genome-encoded transcripts. We show that this positive effect requires specific miR:mRNA base-pairing and Ago2, but not its functional partner GW182, which is excluded from the mitochondria. We provide evidence for the direct action of Ago2 in mitochondrial translation by Ago2 CrossLinking ImmunoPrecipitation coupled with sequencing (CLIP-seq), functional rescue with mitochondria-targeted Ago2, and selective inhibition of the microRNA machinery in the cytoplasm. These findings unveil a positive function of microRNA in mitochondrial translation and suggest a highly coordinated myogenic program via miR-1 mediated translational stimulation in the mitochondria and repression in the cytoplasm. Examination of miRNA's regulation function in mitochondria in C2C12 myoblasts cells and myotubes cells with CLIP-seq (Ago2).

ORGANISM(S): Mus musculus

SUBMITTER: Bo Yang 

PROVIDER: E-GEOD-57596 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2014-08-01 | GSE57596 | GEO
2014-12-22 | E-GEOD-62677 | biostudies-arrayexpress
2014-12-22 | E-GEOD-62675 | biostudies-arrayexpress
2013-07-15 | E-GEOD-44378 | biostudies-arrayexpress
2013-07-15 | E-GEOD-44377 | biostudies-arrayexpress
2016-08-09 | E-GEOD-83410 | biostudies-arrayexpress
2013-07-15 | E-GEOD-44376 | biostudies-arrayexpress
2020-11-23 | E-MTAB-8517 | biostudies-arrayexpress
2016-12-31 | E-MTAB-4368 | biostudies-arrayexpress
2017-04-25 | E-MTAB-4359 | biostudies-arrayexpress