The role of cancer exosomes in non-tumorigenic cells
Ontology highlight
ABSTRACT: The goal of this study is to report that breast cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC Loading Complex (RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. Pre-miRNAs, along with Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43 mediates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomes mediate an efficient and rapid silencing of mRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of patients with breast cancer instigate non-tumorigenic epithelial cells to form tumors in a Dicer-dependent manner. These findings offer opportunities for the development of exosomes based biomarkers and therapies. Exosomes from cancer cells were isolated using established ultracentrifugation methods. The global miRNA content of non-tumorigenic cells was investigated before and after exosomes treatment to study the role of microRNA biogenesis in exosomes for cancer progression and the transformation process of normal cells.
Project description:The goal of this study is to report that breast cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC Loading Complex (RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. Pre-miRNAs, along with Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43 mediates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomes mediate an efficient and rapid silencing of mRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of patients with breast cancer instigate non-tumorigenic epithelial cells to form tumors in a Dicer-dependent manner. These findings offer opportunities for the development of exosomes based biomarkers and therapies. Exosomes from cancer cells and non-tumorigenic cells were isolated using established ultracentrifugation methods. The global miRNA content of cancer exosomes and normosomes was investigated. Profiling of cells themselves was also used as a control. Exosomes with Dicer down regulation (MCF10AshDicer and MDA-MB-231shDicer exosomes), as well as MDA-MB-231 exosomes that contain a Dicer antibody inside were used to study the function Dicer protein in the microRNA biogenesis in exosomes.
Project description:Foxp3+ regulatory T (Treg) cells prevent inflammatory disease but the mechanistic basis of suppression is not understood completely . Gene silencing by RNA interference can act in a cell-autonomous and non-cell-autonomous manner, providing mechanisms of inter-cellular regulation. Here, we demonstrate that non-cell-autonomous gene silencing, mediated by miRNA-containing exosomes, is a mechanism employed by Treg cells to suppress T cell-mediated disease. Treg cells transferred microRNAs (miRNA) to various immune cells, including T helper 1 (Th1) cells, suppressing Th1 cell proliferation and cytokine secretion. Use of Dicer-deficient or Rab27a and Rab27b double-deficient Treg cells to disrupt miRNA-biogenesis or the exosomal pathway, respectively, established a requirement for miRNAs and exosomes for Treg cell-mediated suppression. Transcriptional analysis and miRNA inhibitor studies showed that exosome-mediated transfer of Let-7d from Treg cell to Th1 cells contributed to suppression and prevention of systemic disease. These studies reveal a mechanism of Treg cell-mediated suppression mediated by miRNA-containing exosomes. Regulatory T cells (CD4+CD25hiFoxp3rfp+, Treg) were isolated from naive mice. RNA as extracted form some Treg cells, while others were cultured in complete IMDM media for 3 days, stimulated with anti-CD3 anti-CD3 (1ug/ml) and anti-CD28 (10ug/ml). Exosomes were recovered from Treg cell supernatant, as described, and RNA was extracted form the purified exosomes. To identify which miRNAs were transferred to Dicer-deficient (KO) cells from Treg cells, we cultured Dicer KO cells alone, or co-cultured Dicer KO cells with Treg cells. RNA was extracted form Dicer KO cells cultured alone or from Dicer KO cells cultured in the presence of Treg cells. 3 x biological replicates were used. Each biological replicate was derived from a pool of 3-5 samples.
Project description:The goal of this study is to report that breast cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC Loading Complex (RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. Pre-miRNAs, along with Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43 mediates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomes mediate an efficient and rapid silencing of mRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of patients with breast cancer instigate non-tumorigenic epithelial cells to form tumors in a Dicer-dependent manner. These findings offer opportunities for the development of exosomes based biomarkers and therapies.
Project description:The goal of this study is to report that breast cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC Loading Complex (RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. Pre-miRNAs, along with Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43 mediates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomes mediate an efficient and rapid silencing of mRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of patients with breast cancer instigate non-tumorigenic epithelial cells to form tumors in a Dicer-dependent manner. These findings offer opportunities for the development of exosomes based biomarkers and therapies.
Project description:The goal of this study is to report that breast cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC Loading Complex (RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. Pre-miRNAs, along with Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43 mediates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomes mediate an efficient and rapid silencing of mRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of patients with breast cancer instigate non-tumorigenic epithelial cells to form tumors in a Dicer-dependent manner. These findings offer opportunities for the development of exosomes based biomarkers and therapies.
Project description:Exosomes were isolated from plasma of n = 12 healthy donors (HD) and n = 16 head and neck cancer (HNSCC) patients. miRNA profiling of exosomes was performed using nCounter SPRINT system. miRNAs being predicted to target EMT-related genes (CDH1, VIM, TWIST1 and SNAI1/2) were selected and compared between HD and HNSCC patients.
Project description:The dysregulation of exosomal microRNAs (miRNAs) play a crucial role in the development and progression of cancer. Differentially expressed miRNAs were identified in serum exosomes of GC patients and healthy individuals using next-generation sequencing and bioinformatics.
Project description:Dendritic cells (DCs) are the most potent antigen (Ag)-presenting cells. Whereas immature DCs down-regulate T cell responses to induce/maintain immunological tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact and vesicle exchange. Transfer of nanovesicles (<100nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle microRNAs (miRNAs), and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, an hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, as they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and post-transcriptional regulation between DCs. The study has analyzed the microRNA content of 4 samples of immature exosomes, 4 samples of matures exosomes, 2 samples of immature bone-marrow-derived DCs, and 2 samples of mature bone marrow-derived DCs.
Project description:Microarray analysis of exosomal miRNAs vs the miRNAs of their respective donor cells. To determine the miRNA repertoires of exosomes secreted by immune cells, we isolated exosomes from cell supernatants of the Raji B cell line, the Jurkat-derived J77 T cell line, and primary dendritic cells (DCs) derived from human monocytes. Exosomes were isolated by a series of microfiltration and ultracentrifugation steps