IL-21-mediated non-canonical pathway for IL-1? production in conventional dendritic cells
Ontology highlight
ABSTRACT: The canonical pathway for IL-1? production requires TLR-mediated NF-?B-dependent Il1b gene induction, followed by caspase-containing inflammasome-mediated processing of pro-IL-1?. Here we show that IL-21 unexpectedly induces IL-1? production in conventional dendritic cells (cDCs) via a STAT3-dependent but NF-?B-independent pathway. IL-21 does not induce Il1b expression in CD4+ T cells, with differential histone marks present in these cells versus cDCs. IL-21-induced IL-1? processing in cDCs does not require caspase-1 or caspase-8 but depends on IL-21-mediated death and activation of serine protease(s). Moreover, STAT3-dependent IL-1? expression in cDCs at least partially explains the IL-21-mediated pathologic response occurring during infection with Pneumonia Virus of Mice. These results demonstrate lineage-restricted IL-21-induced IL-1? via a non-canonical pathway and provide evidence for its importance in vivo. Genome-wide transcription factors mapping and binding of STAT3, H3K4me3, H3K27me, H3K4me1, H3K27ac in mouse CD4+ T cells and dendritic cells in WT and Stat3-/- mice. RNA-Seq is performed in mouse CD4+ T cells and dendritic cells in WT mice, with or without indicated cytokines.
Project description:Interleukin-21 (IL-21) has broad actions on T- and B-cells, but its actions in innate immunity are poorly understood. Here we show that IL-21 induced apoptosis of conventional dendritic cells (cDCs) via STAT3 and Bim, and this was inhibited by granulocyte-macrophage colony-stimulating factor (GM-CSF). ChIP-Seq analysis revealed genome-wide binding competition between GM-CSF-induced STAT5 and IL-21-induced STAT3. Expression of IL-21 in vivo decreased cDC numbers, and this was prevented by GM-CSF. Moreover, repetitive M-NM-1-galactosylceramide injection of mice induced IL-21 but decreased GM-CSF production by natural killer T (NKT) cells, correlating with decreased cDC numbers. Furthermore, adoptive-transfer of wild-type CD4+ T cells caused more severe colitis with increased DCs and interferon (IFN)-M-NM-3-producing CD4+ T cells in Il21r-/-Rag2-/- mice (which lack T cells and have IL-21-unresponsive DCs) than in Rag2-/- mice. Thus, IL-21 and GM-CSF exhibit cross-regulatory actions on gene regulation and apoptosis, regulating cDC numbers and thereby the magnitude of the immune response. Total 6 samples were examined. Splenic dendritic cells were treated with IL-21 and/or GM-CSF studying STAT3 and STAT5B binding in the genome
Project description:Interleukin-21 (IL-21) is a pleiotropic cytokine that induces expression of transcription factor BLIMP1 (encoded by Prdm1), which regulates plasma cell differentiation and T cell homeostasis. We identified an IL-21 response element downstream of Prdm1 that binds the transcription factors STAT3 and IRF4, which are required for optimal Prdm1 expression. Genome-wide ChIP-Seq mapping of STAT3- and IRF4-binding sites showed that most regions with IL-21-induced STAT3 binding also bound IRF4 in vivo, and furthermore, revealed that the noncanonical TTCnnnTAA GAS motif critical in Prdm1 was broadly used for STAT3 binding. Comparing genome-wide expression array data to binding sites revealed that most IL-21-regulated genes were associated with combined STAT3-IRF4 sites rather than pure STAT3 sites. Correspondingly, ChIP-Seq analysis of Irf4_/_ T cells showed greatly diminished STAT3 binding after IL-21 treatment, and Irf4_/_ mice showed impaired IL- 21-induced Tfh cell differentiation in vivo. These results reveal broad cooperative gene regulation by STAT3 and IRF4. Affymetrix expression data: Prepare CD4+ T cells from spleen. CD4+ T cells were preactivated, rested, and treated with IL-21 for 1, 6, and 24 hours. ChIP-seq data: Profiling of IRF4 and Stat3 binding with and without IL-21 stimulation in wild type and IRF4 KO mice.
Project description:Defense against attaching and effacing (A/E) bacteria requires the sequential generation of IL-23 and IL-22 to induce protective mucosal responses. While the critical source of IL-22 has been identified as CD4+ and Nkp46+ innate lymphoid cells (ILCs), the precise source of IL-23 is unclear. Here, we use genetic techniques to deplete specific classical dendritic cell (cDC) subsets and analyze immunity to the A/E pathogen Citrobacter rodentium. We find that Zbtb46+ cDCs, and specifically Notch2-dependent intestinal CD11b+ cDCs, but not Batf3-dependent CD103+ cDCs, are required for IL-23 production and immunity against C. rodentium. Notch2 controls cDC differentiation at a terminal step mediated by lymphotoxin signaling. Importantly, these results provide the first demonstration of a non-redundant function of CD11b+ cDCs in vivo. Analysis of differentially expressed genes in ESAM+ and ESAM- CD11b+ and DEC205+ splenic classical DC subsets. Splenocytes were harvested from WT C57Bl/6 or WT Cx3cr1-gfp mice and cDC subsets sorted to >95% purity on the FACSAriaII.
Project description:Defense against attaching and effacing (A/E) bacteria requires the sequential generation of IL-23 and IL-22 to induce protective mucosal responses. While the critical source of IL-22 has been identified as CD4+ and Nkp46+ innate lymphoid cells (ILCs), the precise source of IL-23 is unclear. Here, we use genetic techniques to deplete specific classical dendritic cell (cDC) subsets and analyze immunity to the A/E pathogen Citrobacter rodentium. We find that Zbtb46+ cDCs, and specifically Notch2-dependent intestinal CD11b+ cDCs, but not Batf3-dependent CD103+ cDCs, are required for IL-23 production and immunity against C. rodentium. Notch2 controls cDC differentiation at a terminal step mediated by lymphotoxin signaling. Importantly, these results provide the first demonstration of a non-redundant function of CD11b+ cDCs in vivo. Analysis of Notch2-dependent genes in CD11b+ and DEC205+ splenic classical DC subsets. Splenocytes were harvested from littermate WT Notch2 f/f C57Bl/6 or Notch2 CD11c-cre C57Bl/6 mice and DC subsets sorted to >95% purity on the FACSAriaII.
Project description:Interleukin-21 (IL-21) is a type 1 cytokine essential for immune cell differentiation and function. Although IL-21 can activate several STAT family transcription factors, previous studies focused mainly on the role of STAT3 in IL-21 signaling. Here, we investigated the role of STAT1 and show that STAT1 and STAT3 have at least partially opposing roles in IL-21 signaling in CD4+ T cells. IL-21 induced STAT1 phosphorylation, and this was augmented in Stat3-deficient CD4+ T cells. RNA-Seq analysis of CD4+ T cells from Stat1- and Stat3-deficient mice revealed that both STAT1 and STAT3 are critical for IL-21-mediated gene regulation. Expression of some genes, including Tbx21 and Ifng, was differentially regulated by STAT1 and STAT3, and interestingly, ChIP-Seq analysis showed that STAT3 binding at Tbx21 and Ifng loci was attenuated in Stat1-deficient cells. Moreover, opposing actions of STAT1 and STAT3 on IFN- expression in CD4+ T cells were demonstrated in vivo during chronic lymphocytic choriomeningitis (LCMV) infection. Finally, IL-21-mediated induction of STAT1 phosphorylation, as well as IFNG and TBX21 expression, were higher in CD4+ T cells from patients with autosomal dominant hyper-IgE syndrome (AD-HIES), which is caused by STAT3 deficiency. These data indicate an interplay between STAT1 and STAT3 in fine-tuning IL-21 actions. Genome-wide transcription factors mapping and binding of STAT3 in mouse CD4+ T cells in both WT and Stat1-deficient mice. RNA-Seq is performed in mouse CD4+ T cells in WT, Stat1-deficient and Stat3-deficient mice.
Project description:Dendritic cells (DC) play a vital role in the induction of activation or tolerance of immune response. STAT3 is a master transcriptional regulator of immune response in DCs by positively or negatively regulating DC function, but the mechanisms are unknown. STAT3 is post-translationally modified by acetylation or phosphorylation. While much is understood about transcriptional targets of phosphorylated STAT3, the gene targets and the functional impact of acetylated-STAT3 remain unclear. We aimed to answer the gene targets of acetylated-STAT3 and test the hypothesis that acetylation of STAT3 plays a key role in negative regulation of DCs. We performed genome-wide binding analysis of acetyl-STAT3 by ChIP-Seq coupled with gene expression microarrays. Acetylation of STAT3 induced by SAHA increased its capability to bind to target DNA sites in genome. Theses binding sites were mostly proximal but some were also distal up to over 100 kb from transcription start site. Gene expression array showed 1701 genes up-regulated and 1668 genes down-regulated. Proximal binding of acety-STAT3 showed more effective transcription function than distal binding. In top 500 binding peaks, the frequency of canonical motifs bound by acetyl-STAT3 were significantly higher than that for noncanonical motifs (p<0.00001). Functional analysis revealed that acetyl-STAT3 regulates target genes by upregulating genes that are primarily involved in negative regulation of cytokine production and IL-10 signaling, or downregulating genes that are primarily involved in immune effector process and antigen processing/presentation. Upregulation of IL-10Ra by acetyl-STAT3 contributes to the enhanced sensitivity of IL-10 signaling and negative regulation of DC function. Bone marrow derived dendritic cells were treated with SAHA (500 nm) or diluent for 12 hours. ChIP was performed using antibodies against STAT3, H3K4me3 and matched IgG control. DNA binding profiles were generated by deep sequencing using Illumina HiSeq 2000.
Project description:Single cell timecourse experiments demonstrated that though IL-6 and IL-10 activate STAT3, they generate different temporal patterns of activation, with IL-6 generating a transient activation of STAT3, and IL-10 generating a sustained STAT3 response. We hypothesized that these different STAT3 activation dynamics would dictate the differing cellular responses to the two cytokines. Human monocyte-derived denditic cells from four different donors were treated with IL-6 or IL-10 for either 0min, 45min, 2hr, 4hr, 8hr, or 12hr. Total RNA was isolated from each sample and used for gene expression analysis.
Project description:Microarray experiments were performed to compare the gene expression profiles exhibited by immature and activated bone-marrow (BM) derived conventional DCs (BM-cDCs) and plasmacytoid DCs (BM-pDCs) from WT and miR155-/- mice. (time points 0, 4 and 24 hours)
Project description:Analysis of stage-specific gene expression in Zbtb46GFP/+ pre-CD8 DCs, pre-CD4 DCs, CD24 cDCs and CD172a cDCs Bone Marrow and Splenocytes were harvested from 8-10 littermate Zbtb46GFP/+ mice and sorted to >95% purity on the FACS AriaFusion.
Project description:The canonical pathway for IL-1β production requires TLR-mediated NF-κB-dependent Il1b gene induction, followed by caspase-containing inflammasome-mediated processing of pro-IL-1β. Here we show that IL-21 unexpectedly induces IL-1β production in conventional dendritic cells (cDCs) via a STAT3-dependent but NF-κB-independent pathway. IL-21 does not induce Il1b expression in CD4+ T cells, with differential histone marks present in these cells versus cDCs. IL-21-induced IL-1β processing in cDCs does not require caspase-1 or caspase-8 but depends on IL-21-mediated death and activation of serine protease(s). Moreover, STAT3-dependent IL-1β expression in cDCs at least partially explains the IL-21-mediated pathologic response occurring during infection with Pneumonia Virus of Mice. These results demonstrate lineage-restricted IL-21-induced IL-1β via a non-canonical pathway and provide evidence for its importance in vivo.