Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

An eIF4E1/4E-T complex determines the genesis of neurons from precursors by translationally repressing a proneurogenic transcription program


ABSTRACT: Here, we have addressed the mechanisms that determine genesis of the correct numbers of neurons during development, focusing upon the embryonic cortex. We identify in neural precursors a repressive complex involving eIF4E1 and its binding partner 4E-T that coordinately represses translation of proteins that determine neurogenesis. This eIF4E1/4E-T complex is present in granules with the processing body proteins Lsm1 and Rck, and disruption of this complex causes premature and enhanced neurogenesis and neural precursor depletion. Analysis of the 4E-T complex shows that it is highly enriched in mRNAs encoding transcription factors and differentiation-related proteins. These include the proneurogenic bHLH mRNAs, which colocalize with 4E-T in granules, and whose protein products are aberrantly upregulated following knockdown of eIF4E, 4E-T, or processing body proteins. Thus, neural precursors are transcriptionally primed to generate neurons, but an eIF4E/4E-T complex sequesters and represses translation of proneurogenic proteins to determine appropriate neurogenesis. We obtained 3 biological replicates of IgG-bound RNA, 4E-T-bound RNA, and cooresponding total RNA input from mouse E12-13 cortices. RNA samples were analyzed on the Affymetrix Mouse Gene 2.0 ST Arrays.

ORGANISM(S): Mus musculus

SUBMITTER: Freda Miller 

PROVIDER: E-GEOD-61729 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2014-09-25 | GSE61729 | GEO
2018-01-26 | GSE108404 | GEO
2020-08-20 | GSE153346 | GEO
2015-09-30 | E-MTAB-2892 | biostudies-arrayexpress
2019-06-14 | GSE131668 | GEO
2013-07-26 | E-GEOD-29386 | biostudies-arrayexpress
2008-03-01 | E-MEXP-1308 | biostudies-arrayexpress
2008-03-01 | E-MEXP-1309 | biostudies-arrayexpress
2016-06-29 | PXD001407 | Pride
2019-12-04 | GSE124290 | GEO