The role of small RNAs on phenotypes in reciprocal hybrids between Solanum lycopersicum and S. pimpinellifolium
Ontology highlight
ABSTRACT: we found the expression levels of 76 known miRNAs were highly variable between the reciprocal hybrids through the high-throughput sequencing of small RNAs small RNA sequencing were performed in Solanum lycopersicum, S. pimpinellifolium and their reciprocal hybrids
Project description:we found the expression levels of 76 known miRNAs were highly variable between the reciprocal hybrids through the high-throughput sequencing of small RNAs
Project description:This SuperSeries is composed of the following subset Series: GSE34655: Genome-wide profiling of DNA methylation in two Arabidopsis ecotypes and their reciprocal hybrids - mRNA-seq GSE34656: Genome-wide profiling of DNA methylation in two Arabidopsis ecotypes and their reciprocal hybrids - small RNA-seq GSE34657: Genome-wide profiling of DNA methylation in two Arabidopsis ecotypes and their reciprocal hybrids - Bisulfite-seq Refer to individual Series
Project description:Heterosis is a fundamental biological phenomenon characterized by the superior performance of a hybrid over its parents in many traits, but the underlying molecular basis remains elusive. To investigate whether DNA methylation plays a role in heterosis, we compared at single base-pair resolution the DNA methylomes of Arabidopsis Ler and C24 parental lines and their reciprocal F1 hybrids that exhibited heterosis for many quantitative traits. Both hybrids displayed increased DNA methylation across their entire genomes, especially in transposable elements. Interestingly, we found that increased methylation of the hybrid genomes predominantly occurred in regions that were differentially methylated in the two parents and covered by small RNAs (sRNAs), implying that the RNA-directed DNA methylation (RdDM) pathway may direct DNA methylation in hybrids. In addition, we found that 77 genes sensitive to remodeling of DNA methylation were transcriptionally repressed in both reciprocal hybrids, including genes involved in flavonoid biosynthesis and two circadian oscillator genes, CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL. Moreover, growth vigor of F1 hybrids was compromised by treatment with an agent that demethylates DNA, and by abolishing production of functional small RNAs due to mutations in Arabidopsis RNA methyltransferase HUA ENHANCER1. Together, our data suggest that genome-wide remodeling of DNA methylation directed by the RdDM pathway may play a role in hybrid vigor. Examination of mRNA sequencing in 2 Arabidopsis ecotypes and their reciprocal hybrids.
Project description:Heterosis is a fundamental biological phenomenon characterized by the superior performance of a hybrid over its parents in many traits, but the underlying molecular basis remains elusive. To investigate whether DNA methylation plays a role in heterosis, we compared at single base-pair resolution the DNA methylomes of Arabidopsis Ler and C24 parental lines and their reciprocal F1 hybrids that exhibited heterosis for many quantitative traits. Both hybrids displayed increased DNA methylation across their entire genomes, especially in transposable elements. Interestingly, we found that increased methylation of the hybrid genomes predominantly occurred in regions that were differentially methylated in the two parents and covered by small RNAs (sRNAs), implying that the RNA-directed DNA methylation (RdDM) pathway may direct DNA methylation in hybrids. In addition, we found that 77 genes sensitive to remodeling of DNA methylation were transcriptionally repressed in both reciprocal hybrids, including genes involved in flavonoid biosynthesis and two circadian oscillator genes, CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL. Moreover, growth vigor of F1 hybrids was compromised by treatment with an agent that demethylates DNA, and by abolishing production of functional small RNAs due to mutations in Arabidopsis RNA methyltransferase HUA ENHANCER1. Together, our data suggest that genome-wide remodeling of DNA methylation directed by the RdDM pathway may play a role in hybrid vigor. Examination of small RNA sequencing in 2 Arabidopsis ecotypes and their reciprocal hybrids.
Project description:Plants represent the nutritional basis of virtually all life on earth and protein-rich foods from crop plants are a global megatrend essential for sustaining an increasing human population and counteracting climate change. While the genomes of crops are increasingly elucidated, little is known about crop proteomes – the entirety of proteins that execute and control nearly every aspect of life. To address this shortcoming we optimized a protocol for mapping the proteome of different crops such as Solanum lycopersicum (tomato) fruit and included four technical replicates and three biological replicates from different tomato plants to demonstrate the robustness of the workflow.
Project description:Heterosis is a fundamental biological phenomenon characterized by the superior performance of a hybrid over its parents in many traits, but the underlying molecular basis remains elusive. To investigate whether DNA methylation plays a role in heterosis, we compared at single base-pair resolution the DNA methylomes of Arabidopsis Ler and C24 parental lines and their reciprocal F1 hybrids that exhibited heterosis for many quantitative traits. Both hybrids displayed increased DNA methylation across their entire genomes, especially in transposable elements. Interestingly, we found that increased methylation of the hybrid genomes predominantly occurred in regions that were differentially methylated in the two parents and covered by small RNAs (sRNAs), implying that the RNA-directed DNA methylation (RdDM) pathway may direct DNA methylation in hybrids. In addition, we found that 77 genes sensitive to remodeling of DNA methylation were transcriptionally repressed in both reciprocal hybrids, including genes involved in flavonoid biosynthesis and two circadian oscillator genes, CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYPOCOTYL. Moreover, growth vigor of F1 hybrids was compromised by treatment with an agent that demethylates DNA, and by abolishing production of functional small RNAs due to mutations in Arabidopsis RNA methyltransferase HUA ENHANCER1. Together, our data suggest that genome-wide remodeling of DNA methylation directed by the RdDM pathway may play a role in hybrid vigor. Examination of DNA methylation by Bisulfite sequencing in 2 Arabidopsis ecotypes and their reciprocal hybrids.
Project description:Gene expression of Col, Van and reciprocal hybrids using double-stranded cDNA followed by bioprime random labeling, and hybridization to AtTILE1 forward array. Study on gene expression polymorphism between arabidopsis thaliana accessions Col-0 and Van-0. Study on the inheritance of gene expression in reciprocal hybrids. Keywords: cDNA hybridization
Project description:A spectral library was built for Solanum lycopersicum. The spectral library allows reproducible quantification for thousands of peptides per SWATH-MS analysis.
Proteins from Solanum lycopersicum pericarp were digested with trypsin using in-gel digestion and the peptides were fractionated by high-pH reverse phase chromatography. HRM peptides were spiked into the peptides mixture and each fraction was injected on a Sciex TripleTOF 6600 mass spectrometer fitted with microflow set-up.
The resulting .wiff files were analysed using MaxQuant and Spectronaut.
Project description:Lines nearly isogenic for fw3.2 in the cultivated background Solanum lycopersicum c.v. Yellow Stuffer were grown in the greenhouse in a completely randomized design. fw3.2 (ys) and fw3.2 (wt) are NILs carrying cultivated and wild alleles for fw3.2 locus. Young flower buds were harvested. For each sample, three replicates were used. RNA was extracted using Trizol and Stand-specific libraries were prepared from total RNA and sequences of 51 bp were generated on an Illumina HiSeq2000.