Comprehensive transcriptome analysis of phytohormone pathway genes and miRNAs in ABA initiated strawberry receptacle ripening
Ontology highlight
ABSTRACT: We used Illumina sequencing to investigate the global transcriptomic expression of hormonal pathway genes in ABA initiated strawberry receptacle ripening. Expression profiles of hormone synthetic and signaling genes further demonstrated the positive roles of ABA and GA, and the negative role of auxin in receptacle ripening. We also evaluated the transcript profiling of ethylene and JA pathway genes, and the results suggested that both ethylene and JA participated in receptacle ripening. Furthermore, two novel miRNAs and three conserved miRNAs were identified and validated to target genes in ABA and auxin pathways, respectively. Our analyses reveal the molecular mechanism of hormonal regulation during strawberry receptacle ripening. The data also provide an abundant of genetic information for molecular manipulation on non-climacteric fruit ripening. Sample 1: CK0 (Strawberry fruit two weeks after athesis treated with water, set as day 0); Sample 2: CK5 (fruit treated with water on day 5); Sample 3: CK8 (fruit treated with water on day 8); Sample 4: ABA5 (fruit treated with ABA on day 5); Sample 5: ABA8 (fruit treated with ABA on day 5); Sample 6: NDGA5 (fruit treated with water on day 5); Sample 7: NDGA8 (fruit treated with NDGA on day 8).
Project description:We used Illumina sequencing to investigate the global transcriptomic expression of hormonal pathway genes in ABA initiated strawberry receptacle ripening. Expression profiles of hormone synthetic and signaling genes further demonstrated the positive roles of ABA and GA, and the negative role of auxin in receptacle ripening. We also evaluated the transcript profiling of ethylene and JA pathway genes, and the results suggested that both ethylene and JA participated in receptacle ripening. Furthermore, two novel miRNAs and three conserved miRNAs were identified and validated to target genes in ABA and auxin pathways, respectively. Our analyses reveal the molecular mechanism of hormonal regulation during strawberry receptacle ripening. The data also provide an abundant of genetic information for molecular manipulation on non-climacteric fruit ripening.
Project description:In contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a non-climacteric fruit, is still limited. NAC transcription factors mediate different developmental processes in plants. Here, we identified and characterized FaRIF (Ripening Inducing Factor), a NAC transcription factor that is highly expressed and induced in strawberry receptacles during ripening. Functional analyses based on stable transgenic lines aimed at silencing FaRIF by RNA interference, either from a constitutive promoter or the ripe receptacle-specific EXP2 promoter, as well as overexpression lines showed that FaRIF controls critical ripening-related processes such as fruit softening and pigment and sugar accumulation. Physiological, metabolome and transcriptome analyses of receptacles of FaRIF-silenced and overexpression lines point to FaRIF as a key regulator of strawberry fruit ripening from early developmental stages, controlling abscisic acid (ABA) biosynthesis and signaling, cell wall degradation and modification, the phenylpropanoid pathway, volatiles production, and the balance of the aerobic/anaerobic metabolism. FaRIF is therefore a target to be modified/edited to control the quality of strawberry fruits.
Project description:The role played by transcription factors in the regulation of strawberry fruit ripening process is scant. We have identified and functionally characterized FaDOF2, a DOF-type transcription factor. FaDOF2 is a ripening-related transcription factor that regulates key genes involved in eugenol biosynthesis in strawberry fruit receptacles.
Project description:The role played by transcription factors in the regulation of strawberry fruit ripening process is scant. We have identified and functionally characterized FaPRE1, a non-DNA-binding bHLH transcription factor. FaPRE1 is a ripening-related transcription factor that regulates genes involved in cell architecture in strawberry fruit receptacles.
Project description:The role played by transcription factors in the regulation of strawberry fruit ripening process is scant. We have identified and functionally characterized FaPRE1, a non-DNA-binding bHLH transcription factor. FaPRE1 is a ripening-related transcription factor that regulates genes involved in cell architecture in strawberry fruit receptacles.
Project description:DNA methylation is a conserved epigenetic mark that influences diverse biological processes in many eukaryotes. Recently, DNA methylation was proposed to regulate fleshy fruit ripening. Fleshy fruits can be distinguished by their ripening process as climacteric fruits, such as tomatoes, or non-climacteric fruits, such as strawberries. Tomatoes undergo a global decrease in DNA methylation during ripening, due to increased expression of a DNA demethylase gene. The dynamics and biological relevance of DNA methylation during ripening of non-climacteric fruits, or other climacteric fruits, are unknown. Here, we generated and characterized single-base resolution maps of the DNA methylome in strawberry fruit, from immature to ripe stages. We observed an overall loss of DNA methylation during strawberry fruit ripening. Thus, ripening-induced DNA hypomethylation occurs not only in climacteric fruit, but also in non-climacteric fruit. However, we discovered that the mechanisms underlying DNA hypomethylation during ripening of tomato and strawberry are distinct. Unlike in tomatoes, DNA demethylase genes were not up-regulated during ripening of strawberries. Instead, genes involved in RNA-directed DNA methylation were down-regulated during strawberry ripening. Further, ripening-induced DNA hypomethylation was associated with decreased siRNA levels, consistent with reduced RdDM activity. Therefore, we propose that DNA hypomethylation during strawberry ripening is caused by diminished RdDM activity. Finally, hundreds of ripening-related genes displayed altered expression that was associated with, and thus potentially regulated by, DNA hypomethylation during ripening. Our findings provide new insight into the DNA methylation dynamics during the ripening of non-climateric fruit and reveal a novel function of RdDM in regulating an important process in plant development.
Project description:To identify miRNAs involved in senescence of strawberry fruit, two independent small RNA libraries and one degradome library from strawberry fruits stored at 20 M-BM-0C for 0 and 24 h were constructed. A total of 18,759,735 and 20,293,492 mappable small RNA sequences were generated in the two small RNA libraries, respectively, and 88 known and 1224 new candidate miRNAs were obtained. Among them, 94 miRNAs were up-regulated and 64 were down-regulated in the senescence of strawberry fruit. Through degradome sequencing, 103 targets cleaved by 19 known miRNAs families and 55 new candidate miRNAs were identified. 14 targets, including NAC transcription factor, Auxin response factors (ARF) and Myb transcription factors, cleaved by 6 known miRNA families and 6 predicted candidates, were found to be involved in regulating fruit senescence. sample 1: Examination of small RNA in strawberry fruits stored at 20 M-BM-0C for 0; sample 2: Examination of small RNA in strawberry fruits stored at 20 M-BM-0C for 24 h
Project description:With the development of high throughput sequencing technologies, plenty of non-coding RNAs (ncRNAs) have been discovered to play important roles in diverse plant biological processes. Although these ncRNAs extensively exist in plant, their biological functions are still remained to characterize. To obtain a comprehensive understanding of long non-coding RNA (lncRNA) function in strawberry fruit ripening progress, we performed transcriptomic analyses on the diploid strawberry Fragaria vesca in a time-course during fruit ripening. Here, we have identified 25,613 lncRNAs based on RNA-seq data from poly(A)-depleted libraries and rRNA-depleted libraries. Among them, most of lncRNAs exhibit stage-specific expression pattern. Functional analysis on F.vesca endogenous FRUIT RIPENING-RELATED LONG ANTISENSE INTERGENIC RNA (FRILAIR) in octaploid strawberry Falandi, we found that overexpression FRILAIR can compete miR397 to regulate its target laccase genes (LACs), and it may contribute to strawberry ripening. Our findings demonstrate that FRILAIR can act as a competing endogenous RNA (ceRNA) by disturbing miR397 to repress expression level of LACs, and would be valuable for strawberry ripening.
Project description:Tomato fruit ripening is under the control of ethylene as well as a group of ethylene-independent transcription factors, including NON-RIPENING (NOR) and RIPENING INHIBITOR (RIN). During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit-specific overexpression of LYCOPENE β-CYCLASE (LCYb) under the control of the PHYTOENE DESATURASE (PDS) promoter resulted in increased levels of β-carotene and ABA and in decreased ethylene levels. Genes regulated by ABA, or involved in its synthesis and signaling, were overexpressed, while those associated with ethylene and cell wall remodeling were repressed. In agreement with the transcriptional data, LCYb-overexpressing fruits exhibited increased density of cell wall material containing linear, under-methylated pectins and displayed an array of additional ripening phenotypes, including delayed softening, increased turgor, enhanced shelf life and a thicker cuticle with a higher content of cutin monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoids also changed in the transgenics, which could be attributed to delayed fruit ripening and to ABA respectively. Network correlation analysis suggests that ABA, acting through NOR and RIN, is responsible for many of the above phenotypes. These data reinforce suggestions that ABA plays an important role in tomato fruit ripening and provide clues that fruit b-carotene, acting as a precursor for ABA, actively participates in controlling the ripening process rather than merely being an output thereof. Overexpression of a LCYb gene from Arabidopsis under the control of the ripening-associated PDS promoter leads to ripe tomato fruits accumulating high β-carotene levels. Using several independent transgenic lines, we conducted a system-wide study of the effect of increased β-carotene levels on tomato fruit ripening and shelf life. Our data suggest that β-carotene, acting through ABA, is involved in a regulatory loop within the network controlling tomato fruit ripening.
Project description:Purpose: The goals of this study was to provide genome-wide data to investigate the molecular mechanism of the interaction between ABA and ethylene during tomato fruit ripening Methods: Regarding the fruits sampled at the 9th day as a well-characterized stage, we used RNA-seq to conducted a comparative analysis of exogenous ABA and NDGA effects on all components involved in biosynthesis and signaling of ethylene and ABA.The identified crucial genes in response to ABA were further performed a ripening time-course analysis by RT-PCR. In addition, we also detected how ethylene affected ABA action at the onset of ripening by treating the fruits with 1-MCP immediately after ABA application. Results: Our study not only illustrated how ABA regulated itself at the transcription level, but also elucidated that ABA can facilitate ethylene production and response by regulating some crucial genes such as LeACS4, LeACO1 and LeETR6 etc. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR etc.) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Conclusions: Our data suggested that ABA may act as an upstream regulator to modulate ethylene synthesis and signal transduction, which consequently influenced the ripening process. This comprehensive survey not only demonstrated how ABA regulated itself at the molecular level, but also indicated that ABA had a positive impact on ethylene production and action by regulating key genes such as LeACS2, LeACS4, LeACO1 and LeETR6. Besides, our results also revealed that ethylene might be of great importance to induce ABA accumulation and response at the onset of ripening. Moreover, many ripening related TFs, such as MADS-RIN, TAGL1, CNR and NOR, were observed to be affected by ABA, implying that a TF-mediated manner may be involved in the interaction between ABA and ethylene. This study extends our understanding of the mechanism that how ABA-triggered tomato fruit ripening, and illustrates the complex mechanism of reciprocity between ABA and ethylene at the transcription level.