Expression data from Caenorhabditis elegans fed with the bacterial strain Bifidobacterium animalis sbsp. lactis CECT 8145
Ontology highlight
ABSTRACT: Modulation of gut microbiota through probiotic supplementation is an interesting strategy to prevent obesity We use microarrays to study the global genome expression of C. elegans fed with the probiotic strain Bifidobacterium animalis sbsp. lactis CECT 8145 Wild type strain N2 of C. elegans was cutured in Nematode Growth medium (NGM, control fed) or NGM with a bacterial lawn fed of the strain B. animalis subsp. lactis CECT 8145, until reach young adult stage. Worm population were age-synchronized. RNA was isolated from each populations (control and treated) using RNAasy Kit (Qiagen) and hybridizated on Affymetrix microarrays.
Project description:Modulation of gut microbiota through probiotic supplementation is an interesting strategy to prevent obesity We use microarrays to study the global genome expression of C. elegans fed with the probiotic strain Bifidobacterium animalis sbsp. lactis CECT 8145
Project description:Although intestinal microbiota play a pivotal role in the development of host immune system this biological issue was not so far studied in great detail. In this study we examined immune response of Caco-2 enterocytes after incubation with common probiotic Bifidobacterium animalis subsp. lactis BB-12 for 4 hours. We used microarrays to inspect the global gene expression of Caco-2 cells upon co-culturing with B. animalis subsp. lactis BB-12 and several distinct immune-related genes up-regulated during this process.
Project description:Although intestinal microbiota play a pivotal role in the development of host immune system this biological issue was not so far studied in great detail. In this study we examined immune response of Caco-2 enterocytes after incubation with common probiotic Bifidobacterium animalis subsp. lactis BB-12 for 4 hours. We used microarrays to inspect the global gene expression of Caco-2 cells upon co-culturing with B. animalis subsp. lactis BB-12 and several distinct immune-related genes up-regulated during this process. One time point (T4) and two controls (T0) were analysed. T0 represent differentiated Caco-2 cells cultivated for 3 weeks. T4 represents differentiated Caco-2 cells cultivated for 3 weeks plus consequent 4 hours of co-cultivation with B. animalis subsp. lactis BB-12. 3 technical replicates for T0-1, T0-2 or T4 were pooled to a single sample, RNA extracted and further used in gene expression experiments.
Project description:We used Affymetrix microarrays to investigate gene expression changes in the liver of wild-type C57BL-6 mice exposed to a high-fat diet that might have been caused by the oral consumption of the probiotic B. pseudocatenulatum CECT 7765. The aim of this work was to determine whether the daily intake (by oral gavage) of the probiotic (P) B. pseudocatenulatum for seven weeks exerted any modulatory effects, at the level of gene expression, in the liver of C57BL-6 male mice exposed to a high-fat diet (HFD). Male mice were randomly assigned to four experimental groups (n= 5 animals per group) as follows: (1) control group, fed a standard diet (SD); (2) obese group, fed a high-fat diet (HFD); (3) a group that received the SD and a daily dose of the probiotic (1M-CM-^W109 CFU B. pseudocatenulatum CECT 7765) (SD+P); and (d) an obese group that was fed the HFD and a daily dose of the probiotic (1M-CM-^W109 CFU B. pseudocatenulatum CECT 7765) (HFD+P). At the end of the experimental procedure total RNA was extracted from the liver to compare differential gene expression between the groups. Liver differential gene expression after 7 weeks of supplementation between: 1) the HFD group and the SD group (effects of the high-fat diet); 2) the HFD+P and the HFD (effects of the probiotic on the consumption of a high-fat diet) and 3) the SD+P group and the SD (direct effects of the probiotic on the liver of animals consuming a normal diet).
Project description:The goal was to determine the effect of agmatine on the trancriptional profile of L. lactis CECT 8666 strain. For that we compared the expression profile of L. lactis CECT 8666 cells grown in culture medium supplemented with 20 mM agmatine with the expression profile of L. lactis CECT 8666 cells grown in culture medium without agmatine.
Project description:The goal was to determine the effect of agmatine on the trancriptional profile of L. lactis CECT 8666 strain. For that we compared the expression profile of L. lactis CECT 8666 cells grown in culture medium supplemented with 20 mM agmatine with the expression profile of L. lactis CECT 8666 cells grown in culture medium without agmatine. L. lactis CECT 8666 cells grown in GalM17 medium (reference) compared to L. lactis CECT 8666 cells grown in GalM17 medium supplemented with 20 mM agmatine (test).
Project description:Cocoa protein content is a very interesting source for isolation of antioxidant bio-peptides, which can be used for the prevention of age-related diseases. We use microarrays to study the global genome expression of C. elegans fed with a peptide (13L) isolated from cocoa. Wild type strain N2 of C. elegans was fed with 1 µg/mL of 13L peptide or in Nematode Growth medium (MGM, control fed) until reach young adult stage. Worm population were age-synchronized. RNA was isolated from each populations (control and treated) using RNAasy Kit (Qiagen) and hybridizated on Affymetrix microarrays.
Project description:Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans, and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially-available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains. 73 samples total. Evaluation of changes in a model community's metatranscriptome over time after exposure to a consortium of 5 fermented milk product (FMP) strains (40 samples); evaluation of the gene expression of the FMP strains in other in vitro conditions, including MRS medium (B. animalis subsp. lactis only, 4 samples) and a commercial FMP fermentation (all 5 strains, 6 samples); evaluation of the gene expression of native human microbiomes before and after the consumption of a commercial FMP (23 samples).
Project description:We have previously reported that tyrosol (TYR), one of the main phenols in extra virgin olive oil (EVOO), promotes lifespan extension in the nematode Caenorhabditis elegans, also inducing a stronger resistance to thermal and oxidative stress in this animal model. Although the influence of several longevity-related genes in these effects has been reported by our group, we decided to perform a whole genome DNA-microarray approach in order to identify other genes and molecular pathways further involved in TYR effects on C. elegans longevity. Microarray analysis identified 208 differentially expressed genes (206 overexpressed and 2 underexpressed) when comparing TYR-treated nematodes with non-treated controls. Many of these genes seem linked to processes such as regulation of growth, transcription, reproduction, lipid metabolism and body morphogenesis. Data obtained by microarray was validated by qRT-PCR analysis of selected genes. Our results confirm that several important cellular mechanisms related to longevity are influenced by TYR treatment in this animal model. Moreover, we detected an interesting overlap between the expression pattern elicited by TYR and those induced by other dietary polyphenols known to extend lifespan in C. elegans, such as quercetin and tannic acid. C. elegans were maintained on Nematode Growth Medium (NGM) and E. coli OP50 as described [21]. For microarray experiments, fer15(b26) nematodes were synchronized by hypochlorite treatment and raised at 25°C on NGM plates containing either 250 μM TYR (n=3) or vehicle (control; n=3). At the fourth day of adulthood, nematodes were collected from the plates in M9 buffer, washed 3 times and pelleted by centrifugation for RNA isolation. After centrifugation, worms were resuspended in 350 μl of RLT/BME buffer, flash frozen in liquid nitrogen and thawed at 37 °C three times for disruption and total RNA was extracted using the RNeasy Mini Kit (Qiagen) following the manufacturer recommended protocol. Final volume of isolated RNA was 50 μl per biological sample. RNA quality was analyzed with the 2100 Bioanalyzer (Agilent Technologies) using the RNA 6000 nano kit. All RNA samples were of sufficient quality for gene array analysis with RIN>7. A total amount of 50 ng of RNA was used as the template for cDNA synthesis and in vitro transcription to synthesized biotin-modified aRNA using the GeneChip® 3’ IVT Express Kit (Affymetrix, 901228). aRNA was purified from unincorporated nucleotides and other reaction components using the RNeasy Mini Kit (Qiagen). A total of 15 µg of biotin-labeled aRNA was fragmented following the instructions described in the Affymetrix manual (P/N 702646 Rev.8) and hybridized to C. elegans GeneChip® Genome Arrays (Affymetrix, 900383). They were processed and scanned using Affymetrix instrumentation and with hybridization, washing and scanning parameters provided by the manufacturer. Computational and statistical analyses were carried out using the R software (http://www.r-project.org/) and the appropriate Bioconductor packages (http://www.bioconductor.org/) run under R. In order to remove all the possible sources of variation of a non-biological origin between arrays, densitometry values between arrays were normalized using the RMA (robust multiarray) normalization function implemented in the Bioconductor affylmGUI. Statistically significant differences between groups were identified using the rank product non-parametric test implemented in the Bioconductor Rank-Prod package. Those genes showing a corrected (FDR) p-value < 0.05 were selected as significant.
Project description:Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans, and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially-available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains.