Transcriptional Regulationand Chromatin Dynamics in Human Epithelial Cell Differentiation (ChIP-seq)
Ontology highlight
ABSTRACT: Genome-wide mapping of H3K4me1, H3K4me3 and H3K27ac in KP and DK ChIP-seq for H3K4me1, H3K4me3 and H3K27ac in KP and DK p63 profiling of DK through ChIP-seq
Project description:Gene expression profiling of progenitor and differentiated keratinocytes by Affymetrix microarray Analysis of the transcriptome of progenitors and differentiated keratinocytes, in order to identify genes that are differentially expressed during human skin differentiation.
Project description:In this study we have examine the deposition of H3K4me1,H3K4Me3 and H3K27Ac and the Nodal transcription factor, Smad2/3, immediately following zygotic transcription and continuing through gastrulation. We profiled 4 histone modifications (H3K4Me3, H3K27Me3, H3K27AC, H3K4Me1) and one transcription factor smad2/3 (+ chromatin input) using ChIP-Seq, and expression profiles (3' RNA-Seq) for Xenopus tropicalis embryos stage8, stage9 and stage10.5. Furthermore, we have profile two histone modifications (H3K4Me1 and H3K27Ac) in absance of nodal signaling in stage9 Xenopus tropicalis embryos using ChIP-seq and 3-seq
Project description:We generated maps of H3K4me1, H3K27ac (enhancers), H3K4me3, Pol II (promoters) and H3K27me3 (repressed chromatin) in the genome of human iPSC-derived cardiomyocytes Differentiation of cardiomyocytes from iPSC followed by ChIP-seq of H3K27ac, H34me1, H327me3, H3K4me3 and PolII
Project description:Here we present the whole genome ChIP-Seq analyses of a wide variety of histone marks, H3K27ac, H3K4me1, H3K4me3, and H3K27me3 in the brain, heart, and liver, along with the RNA-seq data of these organs of early human embryos 12 weeks after gestation. In total, brain, heart, and liver of early human post-implantation embryos were used, and four histone modifications were detected, including H3K27ac, H3K4me1, H3K4me3 and H3K27me3. Also, the transcriptomes of these three organs were analyzed.